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Anisotropic dynamics of charge carriers in graphene
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Computer simulation by numerically solving the time-dependent Schrödinger equation was used to investigate
the spreading of electronic wave packets on the graphene surface injected from a local probe. The simulations
show a highly anisotropic in-plane dynamics following a 60◦ angular periodicity even near the Fermi energy.
The wave packet first tunnels onto the small graphene clusters below the tip and the electronic states of these
clusters govern the further spreading of the electron on the graphene surface. It was found that in the vicinity of
the injection point the molecular physical behavior dominates, but at larger distances the wave propagation is
governed by solid-state physical rules. The calculations show complex charge-spreading phenomena at graphene
grain boundaries. Our results reveal a new picture of charge propagation in graphene, which has important
consequences for nanoelectronic applications.
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I. INTRODUCTION

The exponential decrease of physical feature size1 of bulk
silicon-based integrated circuits over time is expected to reach
a physical limit in some years.2 Therefore, developing a
semiconductor design paradigm based on alternate materials is
necessary in order to make possible the further miniaturization.
One of the promising candidates is graphene,3 a single sheet
of graphite. It is a one-atom-thick sheet of sp2 bonded
carbon atoms arranged in a honeycomb lattice. Graphene is
different from the semiconductor materials commonly used
in microelectronics because it has a linear energy dispersion
relation near the Fermi level. The E(kx,ky) function is shaped
like an inverted pair of cones that meet in a single point—the
so-called Dirac point—in momentum space. This photonlike,
quasirelativistic behavior gives rise to a variety of phenomena
which was not possible to study in condensed matter physics,
such as the Klein paradox,4 Andreev reflection,5 Veselago
lens,6 etc. This E ≈ EF (near-to-Fermi-energy) behavior
of graphene band structure has been extensively studied7

in recent years theoretically and also experimentally. The
peculiar properties of graphene are only now beginning to
be understood, and the detailed many-body physics has been
shown to be important.8 Because of the high mobility and
long coherence length, the details of many-body interactions
and strong coherence over reasonable sizes means that the
simple quasiclassical approaches used in most semiconductor
devices are not adequate in graphene. Less is known, however,
about the high excitation energy range when E − EF > 1 eV
(i.e., about the far-from-Fermi-energy domain). It was shown
recently9 that electron beam splitting, collimation, and beam
guiding can all be realized by heterodimensional graphene
junctions, without applying an external electric field. This is
possible in the hot-energy region, where the E(�k) dispersion
relation, which is isotropic near the Fermi energy [i.e. E(�k) =
E(k) if k ≈ kF ] becomes anisotropic if k is far from kF .

Scanning tunneling microscopy (STM) is one of the main
techniques used to investigate with atomic resolution carbon

nanostructures10–12 and devices fabricated from them. There-
fore the precise understanding of the STM imaging mechanism
(i.e., the current flow from the STM tip to the graphene surface)
is important for nanotechnology. An atomically sharp STM
tip is a quantum tunneling contact (QTC). Similarly to a
quantum point contact (QPC), the electrons can enter from
the tip into the sample only through a narrow channel (its
width is 0.1–0.2 nm for atomically sharp tips)13 but contrary
to a QPC, no conducting channel exists; electrons can cross the
channel only via the tunnel effect. The charge transfer through
a QTC is different from that of a QPC both quantitatively
and qualitatively. The tunneling probability in an STM
experiment is typically T = 10−6–10−3, hence the resistance
of an STM QTC is several M� instead of the h/2e2 =
13 k� minimal value characteristic of a QPC. The few
electrons that tunnel are selected so that the transverse
momentum and the higher-energy electrons are preferred by
the QTC. Moreover, when the STM sample is not a simple
metal, the tunneling process includes complicated multiple
scattering and interference effects between the tip states and
sample states.14 The outcome of this complex scattering
process determines T (�k), the transmission probability as the
function of the incoming momentum. Only those few electrons
surviving this selection process remain on the sample and
can spread on it, reaching the other (ground) STM electrode
after a macroscopic spreading. The pattern of this eventual
spreading is determined by two factors: i) the band structure of
the sample and ii) the pattern of electronic waves remaining on
the sample at the end of the initial selection process mentioned
above. One can distinguish two spatial regions in an STM
tip–sample system: the near and far regions, somewhat similar
to the near- and far-field regions distinguished for a radiating
electromagnetic antenna. The region that participates at the
multiple scattering process between tip and sample is the near
region. That region where the influence of the tip is negligible
is the far region.

In this paper we examine in detail the dynamics of the STM
tunneling process from an atomically sharp STM tip onto the
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FIG. 1. Model geometry of the STM tip graphene system.
(a) −2.7 eV equipotential surface of the potential. The surface is
clipped at the boundary of the presentation box. (b) Grayscale image
of the 2D cross section of the potential. The hyperbolic protrusion on
the upper half plane and the horizontal row of black dots represent
the vertical cross sections of the tip and graphene, respectively. Black
(white) denotes smallest (largest) potential values. The dark gray
level at the upper part is the negative potential inside the STM tip
(−9.81 eV), the light gray level at the lower part is the vacuum
potential (zero).

graphene surface, both in the near and the far regions. The
analysis is performed both in time and energy domain, giving
a full picture of the quasiparticle dynamics within the level of
the local one-electron pseudopotential model of graphene.

The organization of the paper is as follows. In Sec. II
the tunnel barrier is constructed for the STM tip–graphene
tunnel junction. Section III gives an outline of the wave-packet
dynamical method for calculating the tunnel current and it
is explained how the eigenfunctions are calculated from the
time-dependent wave function. In Sec. IV numerical results
are presented for the energy- and time-dependent probability
density distribution and probability current distribution. Sec-
tion V is devoted to the discussion of the results.

Hartree atomic units are used in all formulas except where
explicit units are given. SI units are used, however, in all the
figures and numerical data.

II. MODEL POTENTIAL

The model system is shown in Fig. 1. In order to reduce
the many-particle problem into a one-particle problem we
used a local one-electron pseudopotential15 matching the ab
initio band structure of graphene as best as possible. This is a
parametrized potential having the following form:

Vgraphene(�r) =
N∑

j=1

3∑
i=1

Aie
−ai |�r−�rj |2 (1)

where �rj denote the atomic positions and N is the number
of atoms. The Ai , ai coefficients are given in Ref. 15.
The potential forms low-value channels between the nearest-
neighbor C atoms and has a large positive value at the centers of
the hexagons. This effectively prevents the electron to enter the
center region; most of the probability current has to flow along
the bonds, as is seen in the wave-packet dynamical simulation
during the transient period (Sec. IV B). As shown there at
later times in the far region, the probability current still flows
along the C-C bonds locally, but the interference of these local
currents determine the direction of the propagation of the wave
packet.

The STM tip is represented by a jellium background model.
The tip is taken as a hyperboloid of 0.5 nm apex radius and
15◦ aperture angle. The jellium potential is zero outside the
effective surface of the tip and −9.81 eV inside (see Ref. 16
for details). While most of the discussion of our calculations is
done for the tip apex lying above the center of a hexagon, the
effects of the tip position on the spreading pattern are examined
in Sec. IV D.

III. CALCULATION METHOD

In our calculation a Gaussian wave packet is injected
into the graphene sheet from the simulated metallic STM
tip and its time development is calculated by wave packet
dynamics. Wave-packet dynamics17,18 is an effective method
to study electron tunneling through nanostructures. Some of
its advantages are: it includes all multiple scattering and
interference effects, it is well suited for the study of localized
systems, it gives insight into the dynamics of the system, it can
be effectively parallelized, but it is possible to calculate results
for realistic three-dimensional (3D) systems even on a PC. The
Gaussian wave packet is launched with the Fermi momentum
�k = (0,0, − kF ) from inside the tip bulk toward the apex of
the tip. The width of the wave packet has to be chosen to meet
two criteria: i) its energy spread has to extend to the region
of interest (which is ±3 eV in our calculation) and ii) its real
space width has to be significantly larger than the width of
the STM-tip–graphene-tunneling channel. Our chosen value
of �x = �y = �z = 0.37 nm meets these criteria. This
Gaussian is the ψ0(�r; t) initial condition of the dynamics
calculation, where �r = {x,z,y}. The ψ(�r; t) time-dependent
wave function is computed from the time-dependent 3D
Schrödinger equation by the split operator Fourier transform
method19,20 (also called the spectral method). Absorbing
boundary conditions are realized by a drain potential around
the presentation box.21 Utilizing a t → E Fourier transform,
the ψ(�r; E) energy-dependent wave function is calculated
from the time-dependent wave function. The energy resolution
of the ψ(�r; E) wave function can be increased to any desired
accuracy by increasing the Tmax integration time. A 0.1 eV
accuracy was used in our calculation. In order to normalize
ψ(�r; E) properly, we repeated the whole calculation for a
free particle, V (�r) ≡ 0, then each ψV ≡0(�r; E) function was
normalized individually to 1. N (E) normalization coefficients
calculated this way were applied to ψ(�r; E). The simulation
was carried out using a modified version of our computer
code developed for solving the time-dependent Schrödinger
equation in the case of supported carbon nanotubes.16,22,23

IV. RESULTS

A. Energy-dependent analysis

Figure 2 shows the energy-dependent probability density,
�(�r; E) = |ψ(�r; E)|2, for several characteristic energy values.
The inset shows Pgraphene(E), the energy-dependent probability
of finding the quasiparticle on the graphene surface

Pgraphene(E) =
∫

graphene
�(�r; E)dV, (2)
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FIG. 2. (Color online) (a)–(c) Probability density on the graphene sheet for selected energies shown as color-coded 2D sections. We used
a nonlinear color scale [see the scale bar in (c)]. Black corresponds to zero density, bright yellow to the maximum density. Each subimage is
renormalized individually to its maximum density. In (a) and (b) the far region is shown on a separate (enhanced) color scale. Maximum density
values are 2.33 × 10−3 (2.58 × 10−5), 1.94 × 10−3 (3.60 × 10−7), 4.52 × 10−3 (1.15 × 10−3) for the near (far) regions of (a), (b), and (c),
respectively. Probability density values are relative to that measured in the tip bulk. The graphene network is shown by thin orange lines. Size
of the presentation window is 7.68 nm. The inset shows the P(E) probability on the graphene. (d)–(f) Angular distribution of the probability
current for the three energy values shown in (a)–(c) in the far region. Magnitude is relative to the incoming probability current at that energy.

where the integration is done for a volume including the
graphene sheet, taken sufficiently thick that the eigenfunctions
decrease to a negligible value at the upper and lower bound-
aries. The total tip-graphene–tunneling probability is T (E) =
Pgraphene(E) + Pclipped(E), where Pclipped(E) is the probability
for that region of the graphene that is outside the presentation
window, where the absorbing boundary condition is in effect.
According to our calculations this is a small quantity, hence
T (E) ≈ Pgraphene(E). As shown in Fig. 2 (inset), there are
two peaks at Pgraphene(E): a small peak at Elo = −2.38 eV
and a large peak at Ehi = 2.94 eV (energies are relative
to the −5 eV Fermi energy). Figures 2(a)–2(c) display the
�(�r; E) probability density for these three characteristic energy
values: Elo, EF , and Ehi. The peaks of Pgraphene(E) at Elo

and Ehi correspond to the peaks of the density of states
(DOS) of graphene at E = EF ± γ where γ = 2.6 eV is
the tight-binding C-C hopping matrix element. The peaks
of Pgraphene(E) at Elo and Ehi are shifted with an amount of
�E = 0.3 eV towards higher energies from the DOS peak
positions. This is caused by the exponential energy dependence
of the tunnel effect, which shifts the peaks toward higher
energies. This same exponential dependence explains the ratio
of the two peaks: Pgraphene(Elo) � Pgraphene(Ehi). Let us now
turn our attention to the shape of the �(�r; Elo), �(�r; Ehi)
functions. The �(�r; Elo) and �(�r; Ehi) probability density
functions [Figs. 2(a),2(c)] are anisotropic, higher intensities

are seen in the six zigzag directions. This corresponds to
the 6 �K directions in the Brillouin zone of the graphene
sheet. Indeed, the E(�k) = E isoenergy curves in momentum
space are warped into hexagons, when E is far from EF ,
which makes the vg group velocity have a sixfold symmetry.
Trigonal warping24 becomes enhanced, when E − EF ≈ γ .
Zigzag spreading is also seen on the angular probability current
plots shown in Figs. 2(d) and 2(e).

Figures 2(b) (2(e)) display the probability distribution
(probability current distribution) near the Fermi energy,
respectively. These functions have two important character-
istics: i) their magnitude in the far region is considerably
smaller (cf. the numbers in the caption of Fig. 2) than that
seen on Elo and Ehi, and ii) both functions show an anisotropic
spreading at EF . The small values of �far(�r; EF ) and �jfar(�r; EF )
are easily explained by taking into account the vanishing DOS
of graphene at EF . The anisotropic spreading, however, seems
surprising, because the isoenergy curves E(�k) = E are circles
around EF and also the incoming wave packet has a cylindrical
symmetry.

B. Time-dependent analysis

In order to understand this peculiar anisotropic spreading
around EF , we performed a detailed investigation of the
dynamics of the transient period, which begins when the WP
tunnels from the STM tip onto the graphene surface and lasts
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FIG. 3. (Color online) Selected snapshots from the time evolution of the probability density of wave packet shown as color-coded 2D
sections. Black corresponds to zero probability. We used the same color scale on all images, determined by the maximum probability density
on the graphene sheet. The graphene network is shown by thin orange lines. Time values are: 1.22 fs, 2.00 fs, 2.45 fs, 3.14 fs, 3.52 fs, 4.19 fs.
See the text for details. Size of the presentation window is 3.84 nm in both x and y directions. The inset shows the probability current I(t)
flowing from the tip into the graphene surface.

until the stable, far region spreading pattern is formed. Figure 3
shows the details of the time evolution of the wave packet. Only
the middle part (3.84 × 3.84 nm2) of the presentation window
is shown, in order to facilitate investigation of the near region
(see the movies in the Supplementary Material).25 As the wave
packet reaches the tip apex from inside the tip bulk, it begins
to tunnel onto the central hexagon (i.e., that below the tip
apex, t = 1.22 fs). Then the wave packet begins to spread
on the graphene sheet along the C-C bonds, following the
hexagonal symmetry (t = 2.00 fs, t = 2.45 fs). At t = 3.14 fs,
after spreading 1.2 nm from the center, the direction of the
spreading is changed. Further spreading (t = 3.52 fs, 4.19 fs)
occurs along the 6 �K directions of the Brillouin zone, which
matches the zigzag direction of the graphene sheet in direct
space. As we saw above, this zigzag spreading is dominated
by states of E = Ehi = EF + 2.94 eV, because of the DOS
peak at E = EF + γ . As we can see in Fig. 3, for about two
and a half femtoseconds majority of the WP is residing on
the few central hexagons of the graphene lattice. This is the
very time interval, however, as clearly shown on the inset
of Fig. 3, during which a part of the WP tunnels from the
tip into the graphene sheet [see the large negative peak at
I (t)] then the majority of this part tunnels back into the tip
[see the large positive peak at I (t)]. Only a small fraction,

3.8% of the WP that originally tunneled onto the graphene
remains on the graphene surface; the total tunneling probability
(weighted energy sum for the Gaussian WP) is 6.8 × 10−7.
During this back-and-forth tunneling, however, a momentum
selection process takes place.

C. Small graphene clusters

Electronic states of the sample determine which WP
components remain on the graphene and which components
tunnel back into the tip. During the transient period, however,
the WP does not sample the whole graphene surface, because
it spreads only a few hexagons away from the central hexagon
over which the STM tip is placed. Hence, in order to determine
those electronic states relevant for the selection process
we have to study the electronic structure of special graphene
clusters composed only of a few hexagons. These graphene
clusters are similar to polycyclic aromatic hydrocarbon (PAH)
clusters,26–28 but are special because in real PAH molecules the
potential of the edge atoms is different from that of the inner
atoms. In our special graphene clusters the same potential
was applied to each atom, because in our case all atoms are
the same: an sp2 atom of the graphene surface, just the WP
samples different regions of that surface. In other words, these
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FIG. 4. (Color online) Frozen-and-cut C6m2 graphene clusters (see the text for details). (a) Energy level diagram. Those states with hexagonal
symmetry are shown by large yellow circles. (b) Tunneling density of states for all PAH-like states with hexagonal symmetry in the [−4,+4] eV
window. A broadening of 0.5 eV was applied, because of the small lifetime of these states. (c)–(g) Probability density for those states with
hexagonal symmetry in the [−4,+4] eV window.

clusters are frozen and cut from the infinite graphene surface.
Tip perturbation on the electronic states of the sample29,30 can
be neglected, when the tip is far enough. We have calculated the
ψPAH

m,n (�r) orbitals and EPAH
m,n energies of small PAHs of formula

C6m2 (m = 1,2,3,4), where n is the quantum number. These
are frozen-and-cut graphene clusters, as explained above, all
bond lengths were fixed to 0.142 nm. Figure 4(a) shows the
EPAH

m,n energies thus calculated. Deretzis et al. calculated31 the
electronic structure and geometry of small PAH molecules
using different methods. As a reference they used a DFT
calculation, then considered several levels of semiempirical
methods, ending with a simple tight binding (TB). Figure 2
of Ref. 31 shows the HOMO-LUMO gap obtained from the
different methods. HOMO-LUMO gaps calculated from our
EPAH

m,n levels are very close to the TB results of Ref. 31.
This is natural because in simple TB Deretzis et al. used
the same C-C matrix element for all atoms, which is similar
to our frozen-and-cut graphene clusters. Next we calculated
the cPAH

m,n = 〈ψPAH
m,n (�r)|ψtip(�r)〉 matrix elements, where ψtip(�r) is

the tip wave function. These matrix elements tell us, within the
first level of perturbation theory, which PAH-like states are
excited and with what (complex) amplitude.

The most important selection criterion is, of course,
the symmetry. ψtip(�r) being a Gaussian, has a cylindrical
symmetry around a vertical (z direction) line crossing the
graphene plane at the center of a hexagon because the tip

is situated above the center of a hexagon. This rules out all
ψPAH

m,n (�r) orbitals with no hexagonal symmetry; for example
all states with (vertical) mirror planes are canceled [e.g.,
those, where ψPAH

m,n (x,y,z) = ψPAH
m,n (−x,y,z)]. Figure 4 shows

an overview of the bound states for our small graphene
clusters. The energy level diagram of all states is displayed
in Fig. 4(a). Those states with hexagonal symmetry (nonzero
matrix element) are marked with large yellow circles. As it
is shown in Ref. 28, C6m2 clusters do not have states at EF .
There are several states, however, in the [–4 eV, + 4 eV]
energy window of our WP calculation. These levels are shown
in Fig. 4(b), weighted with the matrix element. A broadening
of �E = 0.5 eV was applied, because of the small (≈ 1 fs)
lifetime of these states. Figures 4(c)–4(g) show the |ψPAH

m,n (�r)|2
probability density for the hexagonal cluster states. These
states are excited by the incoming wave packet during the
transient period and the time-dependent superposition of these
states forms the time-dependent patterns seen on the WP
dynamical calculation at the near region (cf. Fig. 3). After the
transient period, quasiparticles concentrated on the PAH-like
states spread out to the whole graphene surface. This explains
the hexagonal anisotropy seen in the spreading even at EF

(cf. Fig. 2): The PAH-like states are all hexagonal and since
they filter out the initial states for the spreading into the far
region, the hexagonal anisotropy is preserved for the whole
process.
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FIG. 5. (Color online) Angular distribution of the probability current density near the Fermi energy in the far region for different tip
positions and different radial distances. (a), (c): Tip above an atom. (b), (d): Tip above the center of a C-C bond. The insets show the probability
density distribution in the near region for the two tip positions.

The situation is similar to that observed in quantum point
contact experiments,32 where two large electron reservoirs
possessing many states are connected through a narrow
channel, which has only a small number of conducting
channels. This system has a nonzero resistance even in case of
no impurities, because reflections occur when a small number
of propagating modes in the waveguide is matched to a large
number of modes in the reservoirs. In our case the STM tip
and the infinite graphene surface are the two reservoirs, but the
conduction can only proceed through small integer number of
states of the small graphene clusters during the transient period.

D. Effect of the tip position

The STM tip had a very special, symmetrical position in
the calculations studied so far: The tip was placed above the
center of a hexagon of the graphene surface. In this section
we investigate the effect of the tip position: which of our
conclusions are specific to the hexagonally symmetric tip
position and which are independent of the tip position? In
order to clarify these questions we performed WP dynam-
ical simulations for different tip positions: when the tip is
above an atom and when it is above the center of a C-C
bond. In this paper only the main results, which answer
the above question concerning the robustness of our results
above, are presented. Details of these calculations will be
published elsewhere. Figure 5 shows the �near(�r; EF ) prob-
ability density distributions in the near field and the �jfar(�r; EF )

probability current density distributions in the far field for
the two tip positions: tip above the atom and above the
C-C bond. The �near(�r; EF ) functions inherit the symmetry
of the initial state, threefold in the above the atom and
twofold in the above the bond configurations. This is because
the cPAH

m,n = 〈ψPAH
m,n (�r)|ψtip(�r)〉 matrix elements (Sec. IV C) are

now nonzero for threefold and twofold symmetric ψPAH
m,n (�r)

functions. Comparing the �jfar(�r; EF ) functions with those for
the above the hexagon configuration (Fig. 2) note that the
magnitude of the current is larger by one or two orders of
magnitude. Calculations in Ref. 28 show that threefold and
twofold symmetric small PAHs do have states at the Fermi
energy. Hence those components of the incoming WP with
E = EF find acceptor states on the small graphene clusters
and so these are not tunneling back into the tip, but spread
into the far region. Observe now the angular distribution
of the �jfar(�r; EF ) functions, shown in Figs. 5(a), 5(c) [5(b),
5(d)] for the threefold (twofold) symmetric tip positions. A
background armchair sixfold symmetry is present in all the
angular distributions but the symmetry of the initial state
(threefold and twofold) is also present. In the case of the
above the atom (above the bond) configuration two threefold
(twofold) symmetric configurations alternate periodically with
increasing radius. As a result, a global sixfold symmetry is
present in �jfar(�r; EF ) for all the three tip positions studied,
hence it is not a consequence of the symmetry of the initial
condition but a consequence of the sixfold symmetric graphene
lattice.
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FIG. 6. (Color online) Probability density on the graphene sheet with the grain boundary for selected energies shown as color-coded 2D
sections. Black corresponds to zero density, bright yellow to the maximum density. The far region is shown on a separate (enhanced) color
scale. The graphene network is shown by thin orange lines. Size of the presentation window is 7.68 nm.

V. DISCUSSION

Figures 3 and 5 show the scattering of an axially symmetric
wave packet by a graphene sheet. This process is perturbed
in the near region by the tip that is used to launch the wave.
It is indeed true that the problem bears resemblance with the
scattering of a Bloch wave by a defect, leading to interferences
that may construct a complicate standing wave pattern. The
analogy cannot be pushed too far, however, because the
dynamics is much more complex in the present context than it
is in a stationary problem. In addition, the incident wave packet
is not an eigenstate of perfect graphene. The near region filters
out those components of the incoming wave packet that match
the spectrum of a small cluster receptor according to selection
rules imposed by the symmetry of the tip-graphene system.
While those components spread away in the far region, the
others are reflected back to the tip. When the tip is localized
above a hexagon center of graphene, there is a nice collimation
of beams along six branches in the far region. The pattern is not
that simple for less symmetric geometries. The tip is indeed a
defect that may be moved at will.

We now turn to discuss some experimental implications of
our results. It should be possible to detect an anisotropic dif-
ferential resistance with sixfold symmetry in low-temperature
transport experiments on graphene, where one of the elec-
trodes is a sharp localized probe. In conventional transport
experiments we do not have a tunneling situation, it is more
like many superimposed point contacts. The point contacts
behave differently22 as compared to a pure tunneling situation.
While a tunnel contact strongly selects those tip states with
momentum perpendicular to the graphene surface, the angular
dependence of the transmission is much wider22 for a point
contact. As graphene is a zero gap semiconductor, under
the widely used experimental conditions, when large contact
area electrodes are used, and the angle of incidence of the
wave packets on the interface can vary over a certain range,
lower energy spreading states are likely to tunnel, too. An
anisotropic conductivity may also appear in conventional
transport experiments, however, at energies close to the

Fermi energy, because the effect of short-range nonsymmetric
defects33 or because the Rashba spin-orbit coupling34 caused
by impurities35 or by the interaction with the support surface.36

A very important factor that may affect the propagation
of charge carriers37,38 in graphene is the presence of grain
boundaries. From the point of view of electronic applications
it is important to note that the charge carrier mobility of
CVD-grown graphene can be orders of magnitude smaller39

than that reported for cleaved graphene.40,41 CVD graphene
is a patchwork of large-angle grain boundaries42,43 with sizes
in the 100 nm range. Figure 6 shows the energy-dependent
probability density, �(�r; E), calculated for a grain boundary for
two characteristic energy values. The 38.9◦ grain boundary44 is
a linear chain of abutting pentagons and heptagons separated
by one row of hexagons, relaxed by a molecular mechanics
potential. The simulated STM tip is on the right side. Our
calculations show a rich variety of transport phenomena,
including beam splitting [Fig. 6(a)] and states localized
on the grain boundary [Fig. 6(b)]. The �(�r; E) probability
density at E = 0.8 eV is indeed similar to the simulated
STM image calculated by Yazyev and Louie [see LAGB
I in Fig. 5(c) of Ref. 31]. The E = 0.8 eV energy of the
localized state corresponds to a DOS peak at E = 0.5 eV if
we take into account the �E = 0.3 eV shift introduced in
Sec. IV A. Details of the wave-packet transport calculation for
the grain boundary are outside the scope of this paper, but the
preliminary results presented here clearly prove the value of
wave-packet transport calculations for complicated graphene
junctions.

VI. CONCLUSION

In summary, our simulations show that when tunneling from
an atomically sharp STM tip into the graphene surface, there
is a transient period of �t ≈ 3 fs duration. The wave packet
needs this time to decide how to spread on the graphene sheet.
The tunneling from the tip into the graphene surface proceeds
in two steps. First, a portion of the wave packet tunnels onto
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the graphene surface, then a majority of it tunnels back into the
tip. Only those portions remaining on the graphene can spread
into the far region. The situation is similar to that analyzed
by Landauer:45 Electrons coming from a large reservoir (tip)
can access the another large reservoir (graphene surface) only
through a system having only a few states (small graphene
clusters). The small graphene clusters select specific states
from the incoming wave packet. The selection is influenced
by the symmetry of the tip position relative to the graphene
surface, but an anisotropic, sixfold symmetric pattern caused
by the sixfold symmetry of the graphene lattice is always
present in the spreading when utilizing an atomically sharp tip.
Symmetry of the lattice has such a considerable effect on the
spreading, because the Fermi wavelength in graphene (λF =
0.74 nm)46 is comparable to the lattice constant. By a detailed
study of the time-dependent dynamics of wave packets on
graphene sheets it is possible to identify the boundary between
the molecular physical and solid-state physical description of
the graphene sheet. At small distances the molecular physical
behavior dominates, but at larger distances the solid-state phys-
ical picture takes over. Utilizing these anisotropic conduction

effects, by patterning the graphene sheet47 into specific ribbons
and junctions it is potentially possible to build all-carbon
nanoelectronic circuits, possibly using geometries reported
earlier.9 Our simulations show that in the regions in which
an accumulation of structural defects is found—like in grain
boundaries in CVD graphene—the charge-spreading phenom-
ena are dramatically altered. Further, more detailed work is
needed to reveal in full the phenomena to be expected in such
regions.

ACKNOWLEDGMENTS

This work has been conducted within the framework of
the Joint Korean-Hungarian Laboratory for Nanosciences
(JKHLN), the Converging Research Center Program through
the Ministry of Education, Science and Technology
(2010K000980) and the OTKA-NKTH, Grant No. 101599
in Hungary. G.I.M. and L.P.B. gratefully acknowledge a grant
from the Belgian Fonds de la Recherche Scientifiques (FNRS).
Helpful discussions with Alex Mayer of FUNDP, Namur, are
gratefully acknowledged.

*mark@sunserv.kfki.hu; www.nanotechnology.hu
1G. E. Moore, Electronics 38 (1965).
2[http://public.itrs.net].
3K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, S. V.
Dubonos, I. V. Girgorieva, and A. A. Firsov, Science 306, 666
(2004).

4O. Klein, Z. Phys. 53, 157 (1929).
5A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).
6V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
7C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
8Y. Barlas, T. Pereg-Barnea, M. Polini, R. Asgari, and A. H.
MacDonald, Phys. Rev. Lett. 98, 236601 (2007).

9Z. Wang and F. Liu, ACS Nano 4, 2459 (2010).
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Nanotechnol. 3, 397 (2008).

125443-9

http://dx.doi.org/10.1016/j.ssc.2008.02.024
http://dx.doi.org/10.1016/j.ssc.2008.02.024
http://dx.doi.org/10.1021/nn1033423
http://dx.doi.org/10.1063/1.3610941
http://dx.doi.org/10.1063/1.3610941
http://dx.doi.org/10.1016/S0039-6028(02)01511-X
http://dx.doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1126/science.283.5398.52
http://dx.doi.org/10.1126/science.283.5398.52
http://dx.doi.org/10.1038/nnano.2008.149
http://dx.doi.org/10.1038/nnano.2008.149

