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1 Research Institute for Technical Physics and Materials Science, P.O. Box 49, 1525 Budapest, Hungary
2 Korean-Hungarian Joint Laboratory for Nanosciences, P.O. Box 49, 1525 Budapest, Hungary
3 Department of Physics of Matter and Radiations, University of Namur FUNDP, 61, Rue de Bruxelles, 5000 Namur, Belgium
4 Center for Advanced Instrumentation, Division of Industrial Metrology, Korea Research Institute of Standards and Science,

Yuseong, 305-340 Daejeon, Republic of Korea

Received 10 June 2011 / Received in final form 12 November 2011
Published online 26 April 2012 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012

Abstract. Probability current and probability density of wave packets was calculated by solving the three
dimensional time-dependent Schrödinger equation for a local potential model of the scanning tunneling
microscope (STM) tip – graphene system. Geometrical and electronic structure effects of the three dimen-
sional tunneling process are identified by studying three models of increasing complexity: a jellium half
space, a narrow jellium sheet, and a local one electron pseudopotential. It was found that some of the key
characteristics of the STM tip – graphene tunneling process are already present at the simple jellium mod-
els. In the STM tip – jellium half space system the direction of the momentum does not change during the
tunneling event, hence this setup is characterised by introducing an effective distance. For the STM tip –
narrow jellium sheet system the direction of the momentum is changed from vertical to horizontal during
the tunneling event. The wave packet preferentially tunnels into the bound state of the jellium sheet. For
the atomistic model of the graphene sheet an anisotropic spreading of the wave packet was found for hot
electrons. This may open new opportunities to build carbon based nanoelectronic devices.

1 Introduction

Graphene [1], a single layer of graphite, is made out of
carbon atoms arranged on a honeycomb lattice. This ma-
terial has unique electronic properties due to the fact that
the charge carriers in graphene follow linear dispersion re-
lations [2] near the Fermi level, as if they were governed
by the Dirac equation. The resulting massless Dirac-like
quasiparticles give rise to new quantum properties such
as the anomalous quantum Hall effect [3], the Klein para-
dox [4] and the Zitterbewegung [5].

Wave packet dynamics (WPD) is an effective method
to study electron propagation in nanostructures [6]. It is
well suited for the study of localized systems, gives an
insight into the dynamics of the system, and can be ef-
ficiently parallelized, allowing to deal with realistic 3D
systems even on a PC. The dynamics of the electrons rep-
resented by wave packets (WPs) in graphene was investi-
gated with different methods in the last years [7–10]. In
these theoretical works the propagation of the Gaussian
WP was calculated both analytically and numerically and
the results give insight into the details of Zitterbewegung
and the quantum revival phenomenon. These calculations
were performed for an isolated graphene sheet, with or
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without external magnetic field, within the usual Dirac
cone approximation. Furthermore all works assumed that
the initial WP had a Gaussian spatial distribution on the
graphene sheet, but it is obviously an idealization.

In order to model a real experimental situation as well
as possible, we did not make any assumptions about the
initial shape of the electron WP on graphene. Therefore in
our model we injected the WP from a simulated scanning
tunneling microscope (STM) tip. The WP subsequently
tunnels onto the graphene surface and spreads on it. It is
well known from STM theory that the tunneling current is
influenced by both the geometry (i.e. the spatial positions
of the atoms) and the electronic structure. Formerly we
performed a detailed analysis of quantum effects arising
purely from the geometry of the system which influence
the STM imaging process of carbon nanotubes [11–13].
Time dependent scattering of electronic WPs was calcu-
lated on a jellium potential model of the STM junction
containing different arrangements of carbon nanotubes
and point contacts. Distribution of the probability cur-
rent and the probability density were derived from the
time dependent wave function. The theory allowed us to
identify components of pure geometrical origin responsible
for characteristic distortions of the STM image of carbon
nanotubes. These geometrical effects can be well described
within the framework of a jellium potential model.
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In this work we present a detailed description of WP
evolution for an STM tip – graphene system taking into
account the effects arising from both geometrical and elec-
tronic structure origin. The metallic STM tip was sim-
ulated with a jellium potential as earlier, and in case
of graphene, we compared two approximations: a jellium
model and a local one electron pseudopotential [14].

The organization of this paper is as follows. Section 2
gives an outline of the WP dynamical method for calcu-
lating the tunnel current and it is explained how relevant
physical quantities are calculated from the time dependent
wave function. In Section 3 we apply the jellium model,
formerly used for STM tip – nanotube – support tunnel-
ing situations, for the STM tip – graphene system. In Sec-
tion 4 we incorporate the band structure effects into the
calculation by means of a local one electron pseudopoten-
tial. Three distinct cases are examined: (a) STM tunnel-
ing into a jellium half space, equivalent to a bulk metal
sample; (b) STM tunneling into a thin jellium sheet – a
model of a graphene-like layer without atomic structure;
and (c) STM tip tunneling into graphene with the atomic
structure taken into account. We conclude with remarks
in Section 5.

Hartree atomic units are used in all formulas except
where explicit units are given. SI units are used, however,
in all the figures and numerical data.

2 Methods

2.1 Time evolution operator

In order to investigate the dynamics of the tunneling event
from the STM tip to the graphene sample and subse-
quent charge spreading on graphene, we used the WPD
method. This conceptionally simple method contains no
perturbative approximation but includes all interference
and multiple scattering effects. The ψ(�r, t) time dependent
wave function is computed from the time dependent 3D
Schrödinger equation by the split operator Fourier trans-
form method [15,16]. The propagated wave function after
a time step Δt can be calculated by applying the time-
evolution operator on the WP at any instant t

ψ(�r, t+Δt) = e−iHΔtψ(�r, t). (1)

Within the split operator method the time evolution op-
erator is approximated by

e−i(K+V )Δt = e−iK/2Δte−iV Δte−iK/2Δt +O
(
Δt3

)
(2)

where the potential energy propagator is a simple mul-
tiplication with exp(−iV (�r )Δt) for local potentials, and
the effect of the kinetic energy propagator exp(−iK/2Δt)
is given in k space by multiplicating the momentum
space wave function ϕ(�k, t) by exp(i|�k|2Δt/4). Using this
method the time evolution of the ψ(�r, t) wave function
can be determined from any arbitrary initial wave func-
tion ψ(�r, t = 0). From the time dependent wave func-
tion the ρ(�r, t) = |ψ(�r, t)|2 probability density and the

�j(�r, t) = Im(ψ∗∇ψ) probability current density can be cal-
culated. Plane integration of �j(�r, t) along a selected mea-
surement plane gives the probability current I(t) crossing
the plane as the function of time, and the tunneling prob-
ability is T =

∫ ∞
0 I(t)dt. The time dependent Schrödinger

equation gives us the time dependent ψ(�r, t) wave func-
tion, which incorporates the complete information about
the dynamics of the quantum system in the time domain.
Sometimes it is more useful, however, to study the dynam-
ics in the energy domain. Utilizing the time-energy (t-E)
Fourier transform we can switch from the time domain
dynamics to the energy domain dynamics [16,17]. Indeed,
the time dependent wave function can be written as a sum
of the eigenstates:

ψ(�r, t) =
∑

n

Anψ(�r, En)e−iEnt (3)

where An are the complex superposition coefficients. Ap-
plying the t-E Fourier transform to this gives

ψ (�r, E) =

Tmax∫

0

ψ (�r, t)w (t) eiEtdt

=
∑

n

Anψ(�r, En)δ (E − En) , (4)

where w(t) is a window function which is used to minimize
the effect of the finite Tmax integration time. From this it
is obvious that the t-E Fourier transform provides us the
eigenstates of the system. We can easily calculate the en-
ergy distribution (spectral distribution) of the WP for any
given spatial region by integrating the ρ(�r, E) = |ψ(�r, E)|2
energy dependent probability density for that region:

P (E) =
∫

V

ρ (�r, E) dV . (5)

2.2 Potential

Within the framework of the jellium potential description
of the STM tip – graphene nanosystem the STM tip is
approached by a rotational hyperboloid of 0.5 nm apex
radius and 15◦ aperture angle. The jellium potential value
is zero outside the effective surface of the tip and −9.81 eV
inside. This value was calculated from the HOPG EF =
5 eV Fermi energy andW = 4.81 eV work function. In first
approximation the graphene sheet is taken as a jellium
sheet of finite thickness. The potential inside the sheet
is also −9.81 eV. In the next step of approximation the
band structure effects are taken into account by applying a
local one electron pseudopotential [14] matching the band
structure of the graphene sheet π electrons. The potential
has the following form

Vgraphene(�r) =
N∑

j=1

3∑

i=1

Aie
−ai|�r−�rj |2 (6)
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(a) (b) (c) 

Fig. 1. Grayscale image of the vertical (xz) cross section of the model potentials. (a) Infinite jellium half-plane, (b) thin jellium
sheet, (c) graphene pseudopotential. The hyperbolic protrusion on the upper half plane and the horizontal row of black dots
(c) represent the vertical cross sections of the tip and graphene, respectively. Black (white) denotes smallest (largest) potential
values. The dark gray level is the negative potential inside the STM tip and the jellium sample (−9.81 eV), the light gray level
is the vacuum potential (zero).

where �rj denote the atomic positions and N is the number
of atoms. The Ai, ai coefficients are given in reference [14].
Figure 1 shows the vertical (xz) cross section of the model
potentials of both the jellium and pseudopotential systems
(z is the direction perpendicular to the graphene sheet).
Absorbing boundary conditions are realized by a drain po-
tential around the presentation box [18]. In order to inves-
tigate the tunneling from the STM tip onto the graphene
surface, the initial Gaussian WP was launched from the
tip bulk towards the apex of the tip with momentum equal
to the Fermi momentum: �k = (0, 0,−kF ). The real space
width of the WP is chosen to be Δx, y, z = 0.37 nm which
is considerably larger than the width of the STM tip-
graphene tunneling channel 0.1–0.2 nm.

3 Wave packet dynamics results
for the jellium model

As we mentioned the tunneling phenomenon is determined
by both the geometry and the electronic structure of the
system. In order to understand the influence of these fac-
tors in the case of the STM – graphene system, first we
focused on pure geometrical effects within the jellium po-
tential model. The STM tip – graphene system has two
important ingredients: an atomically sharp STM tip and
a one atom thick graphene sheet. In order to study the
effects of the STM tip and the graphene sheet separately,
we compared two different situations, when the STM tip
is over a jellium half-space and when the STM tip is above
an infinite jellium plane of thickness 0.09 nm (see Fig. 1).
Figure 2 shows the time evolution of the probability den-
sity in these two cases, Figures 2a and 2b are for the half
space, Figures 2c and 2d are for the thin sheet. Figures 2a
and 2c are for t = 1.95 fs time instant, Figures 2b and 2d
are for t = 3.61 fs. This two particular time instants were
chosen in the moment when the WP already started to
tunnel from the tip apex into the sample (t = 1.95 fs) and
when the WP is already spreading (t = 3.61 fs). Majority
of the WP is reflected back from the boundary of the tip
potential into the tip; note the interference patterns in-
side the tip. These interferences cause vortices to appear

(a) (b)

(c) (d)

Fig. 2. (Color online) Selected snapshots from the time evo-
lution of the probability density of wave packet shown as
grayscale coded 2D sections. (a) and (b) jellium half space.
(c) and (d) thin jellium sheet. (a) and (c) t = 1.95 fs. (b)
and (d) t = 3.61 fs. Black corresponds to zero probability. The
horizontal dashed line shows the position of the plane, where
the tip-sample current was measured. We used a separate gray
scale in the tip region and the sample region (above and below
the dashed line) because the probability density in the sam-
ple is several orders of magnitude smaller than in the tip. The
edges of the jellium electrodes are shown by thin lines.

in the probability current density inside the tip. For the
case of the half space model, which is “open” on below,
the WP can freely propagate in the direction of its initial
momentum, in the −z direction. For the case of the thin
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Fig. 3. (Color online) Probability current for the half space jel-
lium (red line) and thin jellium sheet (blue dashed line) models,
measured in a plane between the tip and the sample. Negative
(positive) values denote current flowing in the −(+)z direc-
tion from the tip (sample) into the sample (tip), respectively.
Note the back-tunneling into the STM tip in the case of the
thin jellium sheet, which is absent at the half infinite jellium
model.

jellium sheet model, however, the WP cannot propagate
in the −z direction because of the large positive potential
step at the lower boundary of the sheet. The WP is thus
first accumulated in the jellium sheet below the tip apex
and then it begins to spread along the sheet preserving its
initial cylindrical symmetry.

The probability current as a function of time (see
Fig. 3) was calculated between the STM tip and the sam-
ple (the jellium surface) for the two models. In contrast
to the jellium half plane where the probability current
assumes only negative (−z direction) values, the current
assumes negative and positive values as well in the case
of the narrow jellium plane. Thus in the second case part
of the tunneled WP tunnels back from the jellium surface
to the STM tip. A transient period of length Δt ≈ 4 fs
can be defined while the probability current still flows be-
tween the tip and the surface. Figure 4 shows the trans-
mission probability of the WP for the half space model.
The spectral distributions of the WP (Eq. (5)) calculated
for the tip and the sample regions are shown at the inset.
Due to the fact that the majority of the WP is reflected
back into the tip bulk during the transient process, the
spectral distribution at the tip region is nearly identical
to the initial spectral distribution of the Gaussian WP.
The spectral distribution curve for the sample region, how-
ever, is shifted towards larger energies. This is because the
tunneling process preferentially selects the larger momen-
tum components. To understand better the effect of the
tip curvature we compare our computed 3D transmission
probabilities of the jellium tip – half space model to a sim-
ple plane-plane (1D) model. With the help of the analyti-
cal expression for the plane-plane transmission probability
an effective tunnel distance [12] deff can be defined. This

tells us that the barrier consisting of a plane sample and
a hyperbolic tip with 0.5 nm radius at 0.32 nm distance
is approximately equivalent to a plane-plane barrier with
0.38 nm effective distance.

Figure 5 shows the spectral distribution for the case
of the jellium sheet. Note the sharp peak at EF + 1.9 eV.
This peak is caused by the bound state of the jellium
sheet. Indeed, the jellium sheet has a finite thickness of
0.09 nm and a −9.81 eV depth. This 1D potential well has
a bound state at E = −3.1 eV. The tunneling event pro-
ceeds in two steps. First the WP tunnels into the bound
state of the jellium. Then this quasi bound state begins
to spread along the sheet. A selection process seems to
operate during the transient period in the case of the nar-
row jellium plane, which means that after the transient
process certain components of the WP are found to be
tunneled back to STM tip and certain components are
found to have remained on the jellium sheet. The oscilla-
tory behaviour of the probability current seen in Figure 4
shows that the transient process is a resonant tunneling
process. The inset of Figure 5 shows the radial probabil-
ity density ρ(r, E) along the jellium sheet. Note that the
state at EF + 1.9 eV (corresponding to the bound state)
is much more delocalized than the one for EF . This also
proves that these components of the WP near the bound
state (EF + 1.9 eV) have a considerably greater proba-
bility to spread on the jellium sheet than those near the
Fermi energy.

In our jellium calculations the first case (rotational hy-
perboloid tip and a half infinite bulk sample) is similar to
a bulk metallic sample where the WP, after the tunneling
event, is able to spread further along the initial direction
(z axis) into the sample. The graphene sheet, however, is
only one atomic layer thick in the z direction. Our second
geometry (STM tip and thin jellium sheet), therefore can
be compared to the graphene geometry where the initial
WP is not able to spread along the z axis; its momentum
has to be changed during the transient process from the
vertical (z) into the horizontal (xy) direction.

4 Wave packet dynamics results
for the atomistic potential

After discussing the geometrical effects we focus on
graphene where the electronic structure is taken into ac-
count with a local one-electron pseudopotential (Eq. (6)).
Figure 1c shows the values of this potential, for a case
when the STM tip is above the centre of a carbon hexagon
of the graphene lattice. The details of the time evolution
of the WP on the graphene surface (xy cross section) can
be seen in Figure 6. As the WP reaches the tip apex from
inside the tip bulk, it begins to tunnel onto the central
hexagon. Then the WP begins to spread on the graphene
sheet along the C-C bonds, in hexagonal symmetry. In this
atomic scale process the WP does not “notice” the in-
finite hexagonal lattice, only follows the pattern of the
pseudopotential which has low value channels between the
nearest neighbour C-C bonds, and positive values at the
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Fig. 4. (Color online) Tip-sample transmis-
sion probability for the jellium half space
model. As a comparison, the thin back line
shows the transmission probability for a plane-
plane model (see the text for details). The
inset shows the spectral distribution of the
wave packet for the sample (red curve) and for
the tip (blue dashed curve). Note the different
scale of the two functions.

Fig. 5. (Color online) Spectral distribution of
the WP calculated for the thin jellium sheet.
The inset shows the radial probability density
for E = EF + 1.9 eV (red curve) and E = EF

(blue dashed curve). Both functions are nor-
malized to one. Energy is relative to the Fermi
energy.

centres of the hexagons. This stage can be regarded as a
“molecular” spreading. The direction of the spreading has
changed at t = 3.14 fs after spreading 1.2 nm from the cen-
tre (the point of the graphene sheet below the tip apex).
The new propagation direction is matching the zigzag di-
rection of the graphene sheet in direct space which is
equivalent to the 6 ΓK directions of the Brillouin-zone.
At later times this propagation pattern remains in the
time evolution of the probability density. This stage can
be regarded as a “solid state” spreading in which the pref-
erential directions are determined by the lattice symmetry.
Figure 7 shows the probability current between the STM
tip and the graphene surface. As a comparison, we also

show the probability current for the narrow jellium plane
model. Both curves show “back and forth tunneling”, i.e.
the tunnel current first shows a large negative peak (tun-
neling towards the sample) then a smaller positive peak
(tunneling back into the tip). Hence a momentum selec-
tion process (see Sect. 3) is operating in case of both
models.

To understand the zigzag propagation directions we
calculated the spectral distribution of the WP on the
graphene sheet, Figure 8. The large peak at E = EF +3 eV
indicates that “hot” electrons are responsible for the
anisotropic spreading on the graphene surface due to the
particular band structure. The selection process in this

http://www.epj.org


Page 6 of 7 Eur. Phys. J. B (2012) 85: 142

  

  

(a) (b) 

(c) (d) 

Fig. 6. (Color online) Selected snapshots (t = 1.50, 2.71, 3.54, 4.29 fs) from the time evolution of the probability density of the
wave packed on the graphene sheet shown as grayscale coded 2D sections. Black corresponds to zero probability. Each image is
separately normalized. The graphene network is shown by thin orange lines.

Fig. 7. (Color online) Comparison of the probability current
for the jellium and atomistic models of the graphene sheet.
Blue dashed curve is for the jellium, red is for the atomistic
model. Note the different magnitude of the two currents. Neg-
ative (positive) values denote current flowing in the −(+)z
direction from the tip (sample) into the sample (tip), respec-
tively.

case is influenced by two factors, a DOS peak and the
strongly delocalized states of the system on the graphene
at this high energy.

Summarizing the simulation shows an anisotropic in-
plane dynamics of the WP following a 60◦ angular pe-
riodicity on the graphene surface. The observed six fold
symmetry is seen on the time development of the WP,
and the probability current flows in the zigzag directions.
This anisotropic charge spreading can be understood from
the graphene band structure in the high energy domain,
where the isoenergy curves in the graphene dispersion
relation are warped into hexagons. The trigonal warp-
ing effect becomes enhanced when E − EF ≈ γ, where
γ ≈ 2.8 eV is the tight-binding C-C diagonal matrix el-
ement [19]. Due to the band structure and geometrical
effects those components are preferred in the transient
process which will be spreading in the zigzag directions.
Furthermore we can identify two different regimes from
the time dependent dynamics on the graphene sheet.
At small distances from the tunneling point the molecu-
lar physical description dominates, spreading takes place

http://www.epj.org
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Fig. 8. (Color online) Spectral distribution of the wave packet
for the graphene sheet. Note the peak at EF + 3 eV caused by
the DOS peak. Energy is relative to the Fermi energy.

along the C-C bonds, at larger distances the solid state
physical picture dominates (the zigzag direction deter-
mined by the band structure).

5 Conclusion

We performed a detailed analysis of wave packet tunneling
for the STM tip – graphene system. We found that several
important features of the dynamics are already present
at a jellium potential model of the system. Two jellium
models were analyzed. In the infinite half space model the
wave packet tunnels from the tip into the sample then
proceeds in the direction of its original momentum, only
the momentum distribution is shifted towards larger en-
ergies because the tunneling process preferentially selects
the higher energy states. The tunneling process in the thin
jellium sheet model differs markedly from this situation,
because the wave packet has to change direction from the
vertical (−z) to horizontal (xy) spreading. If the jellium
sheet has a bound state, the wave packet first “fills” this
resonant state, and then this state begins to decay. Part
of the WP that tunneled onto the sheet tunnels back into
the tip due to the localization and another part spreads
along the jellium sheet.

To some extent the tunneling event for the atomistic
graphene potential proceeds similarly to that for the
jellium sheet. The density of states (DOS) of graphene
has a peak at EF +3 eV, the wave packet first tunnels into
this state then begins to spread along the graphene sheet.
The graphene band structure is anisotropic at this large
energy (trigonal warping effect); hence we can observe an
anisotropic spreading of the wave packet. The observed
sixfold propagation pattern along the zigzag direction
combined with the nanopatterning of graphene [20,21]
may give new opportunities to build carbon based nano

electronic devices [22]. Indeed, as shown in reference [22],
beam splitters, collimators, and beamguides operating in
the hot energy region can all be realized by carefully de-
signed hetero-dimensional graphene junctions.
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