
Time-dependent scattering in 3D

P. Pachera, L. P. BIRÓb, Ph. Lambinc, G. I. Márkb

aDepartment of Physics, Budapest University of Technology and Economics, Budafoki út 8.,
H-1111 Budapest, Hungary,
email: pacher@phy.bme.hu

bNanostructures Laboratory, Research Institute for Technical Physics & Materials Science,
Konkoly T. u. 29-33, H-1121 Budapest, Hungary,

email : mark@sunserv.kfki.hu
cDépartement de Physique, Facultés Universitaires Notre-Dame de la Paix 61,

Rue de Bruxelles, B-5000 Namur, Belgium

Quantum mechanics is a difficult part of undergraduate physics courses both conceptually and
mathematically. Numerical solution of problems on a computer drastically widens the assortment of the few
problems that can be solved analytically, and it opens the possibility of the study of more realistic systems
as well. The presentation of the results in a graphical form contributes to the understanding of the concepts
and phenomena studied. Animation is a unique tool in the study of time dependent phenomena: the images
calculated at different time instants may be joined as a movie. In the middle of nineties the performance of
personal computers and workstations combined with efficient numerical techniques opened new
perspectives for teaching quantum mechanics, in particular time-dependent scattering. Their recent
performance allows to extend the calculation from 2D to 3D and investigate phenomena like the
transmission of electrons through carbon nanotubes.

INTRODUCTION

Students of electrical engineering at the
Budapest University of Technology and
Economics (former Technical University of
Budapest) study Physics in three semesters.
While classical physics is taught in the first two
semesters, the third semester is devoted to
modern physics. About two third of the third
semester consists of a quantum mechanics
course based on traditional axiomatic treatment.

Quantum mechanics plays a fundamental role
in the description and understanding of most
natural phenomena. The properties of atoms and
phenomena which occur on atomic scale, as the
propagation of electrons in a crystal, the
operating principle of solid state electronic
devices, etc., cannot be understood and
explained in the framework of classical physics.
On the other hand, nowadays the basic
knowledge of the concepts of quantum
mechanics and its laws is an integral parts of the
human culture and is a must for everyone who
intends to have an idea and a certain
understanding about how Nature works.
Therefore we strongly believe that quantum
mechanics and an introduction into solid state

physics are essential parts of the physics
curriculum for students of the Electrical
Engineering Faculty.

WHY IS QUANTUM MECHANICS
DIFFICULT FOR STUDENTS?

On the other hand, quantum mechanics is one
of the most difficult parts of undergraduate
physics courses both conceptually and
mathematically [1]. This may cause serious
difficulties for an average student in acquiring the
subject. We are facing this problem especially
since the number of students has largely
increased, along with the lowering of the entrance
requirements in math and physics.

Most students find quantum mechanics too
abstract and mathematically difficult. There are
several reasons for this and some of them are
quite obvious. First the learning process of the
concepts and laws of classical physics, in
particular classical mechanics, is strongly
supported by the everyday experience of the
student which can be enhanced by classroom
demonstrations and by performing direct and
simple experiments. Understanding of the
concepts and principles can be further deepened
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by problem solving. It is supported by the wide
assortment of examples and problems available
in the textbooks.

In classical mechanics the description of the
dynamic state of a particle at a given time t is
based on the specification of six parameters: the
components of the position r(t) and linear
momentum p(t) of the particle. All the dynamical
variables (energy, angular momentum, etc.) are
determined by the specification of r(t) and p(t ).
Newton's laws enable us to calculate r(t) through
the solution of a second order differential
equation with respect to time. Consequently, they
fix the values of r(t) and p(t ) for any time t when
they are known for the initial time.

All this is essentially different for quantum
mechanics. The main difficulty is caused by the
fact that we do not have direct sensory
experience about particles and systems on the
atomic and subatomic scale. The particles do not
obey the laws of classical mechanics; the
extrapolation of the behaviour of macroscopic
objects to the microworld is erroneous. The
classical mechanical description breaks down;
basic concepts, as mass point localised in space,
trajectory of a particle, etc., cannot be used. The
quantum mechanical description of physical
systems differs radically from the one provided by
classical mechanics (although the latter
constitutes, in numerous cases, an excellent
approximation).

A more complicated description of phenomena
must be used in quantum mechanics. The
dynamic state of a particle, at a given time, is
characterised by a wave function ),( trΨ , which

contains all the information that is possible to
obtain about the particle. The state no longer
depends on six parameters, but on an infinite
number of parameters: the values of the complex
valued wave function ),( trΨ  at all points r in the

coordinate space. For the classical idea of
trajectory (the succession in time of the various
states of the classical particle) we must substitute
the idea of the propagation of the wave
associated with the particle. ),( trΨ  is interpreted

as the probability amplitude of the particles
presence and | ),( trΨ |2 is the probability density

of the particle being, at time t, in a volume
element dr3 situated at the point r.

The equation describing the evolution of the
wave function ),( trΨ  is the time-dependent

Schrödinger equation. The Schrödinger equation
is a second order linear differential equation; the
linear superposition of its solutions leads to
interference effects. It is of first order in t; from
this it follows that, given the initial state ),( 0trΨ ,

the final state ),( trΨ  at any subsequent time t is
determined. There is no indeterminacy in the time
evolution of a quantum system.

Indeterminacy appears only when a physical
quantity is measured, the wave function then
undergoes an unpredictable modification.
However, between two measurements, the wave
function evolves in a perfectly deterministic way,
governed by the Schrödinger equation. The result
of a measurement of an arbitrary dynamic
variable must belong to the set of the eigen
values of the operator representing the dynamic
variable. With each eigen value it is associated
an eigenstate, the eigen function of the operator
belonging to the particular eigen value. If a
measurement yields a particular eigen value, the
corresponding eigen function is the wave function
of the particle immediately after the
measurement. The predictions of the
measurement results are only probabilistic: they
yield the probability of obtaining a given result in
the measurement of a dynamical variable.

For an average engineering student the
understanding of the complicated concepts,
terminology and language of quantum mechanics
is a hard job. The learning process is not
supported by the everyday experience and there
are only few experiments available for classroom
demonstration, but even for these (as for instance
electron diffraction) the interpretation of the
results is not trivial. As the state function (the
complex probability amplitude) cannot be
measured directly, its properties have to be
inferred from experiments involving the
measurement of counting rates in scattering
experiments, measurement of optical spectra,
etc.

A further difficulty arises from the fact that only
a limited number of problems are available for the
students to practice. The number of cases when
an analytical solution does exist is very limited;
the solution of nontrivial problems takes a long
time and requires appropriate mathematical skills,
beyond that, these skills cannot be expected from
an average engineering student. In spite of that, it
is important for the students to get acquainted
with many different cases and their solutions, in
order to get the hang of quantum phenomena.



COMPUTER SIMULATION AS AN
 EFFICIENT LEARNING AID

Numerical solution of problems on a computer
drastically widens the assortment of the few
problems that can be solved analytically, and it
opens the possibility for the study of more
realistic systems as well. By performing
“computer experiments” or at least by studying
the outcomes of computer simulations students
can get a certain experience in quantum
mechanics. The presentation of the results in
graphical form may contribute to a large extent to
the understanding of the concepts and
phenomena studied.

Time-dependent Scattering

For many students it is difficult to imagine how
a wave packet evolves in time, how it propagates
and spreads out, what goes on, when it
approaches a potential barrier, what happens to
it during the interaction and how the reflected and
transmitted wave packets are formed, etc. In
order to follow how the state of a system evolves
in time, one has to solve the quantum mechanical
equation of motion, the time-dependent
Schrödinger equation. However, there are only
few and oversimplified cases for which this can
be done analytically. Therefore, numerical
simulation is a unique tool in the study of time
dependent phenomena. Further more the images
calculated at different time instants may also be
used for animation, as it has been done in Ref. [2]
where the graphical output of a main frame
computer was used to produce a movie for
scattering in one dimension. The series of
snapshots showing the scattering process of a 1D
Gaussian wave packet on a potential barrier can
already be found in the recent textbooks of
quantum mechanics.

Nevertheless, for more or less realistic
systems the numerical solution was also a difficult
task because of hardware and software
limitations. In the nineties these limitations were
largely removed by the efficient numerical
techniques developed and by the high speed and
performance of workstations and personal
computers. These computational advances made
it possible to introduce the time dependent
quantum mechanical study of two dimensional
(2D) systems into the education as well [3,4]. An
efficient numerical technique, the split operator

Fourier transform method has been used for the
solution of the 2D time dependent Schrödinger
equation in which the time evolution operator is
approximated by the symmetrical unitary product

where H = T + V is the Hamiltonian operator of
the system, T and V are the kinetic and potential
energy operators, respectively, and δt is the time
increment. According to (1), the evaluation of the
action of the evolution operator on the wave
function is split into three consecutive steps. The
potential energy operator of the system is a
scalar function in coordinate space thus the effect
of the propagator on the wave function is a simple

multiplication by htiVδ−e . In the evaluation of the

effect of the propagator h2e ti δT−  on the wave
function the property of Fourier transform is
utilised that differentiation of a function in
coordinate space is equivalent to multiplication of
the function's representation in the Fourier
transform space (k space) with the conjugate
variable k . In the k space the kinetic energy
operator is a scalar function of the wave vector
(T = h2k2 /2m), thus the action of the exponential
containing the kinetic energy operator on the
wave function can  be evaluated as

( ) ( )[ ][ ](2) ,FeF,e 4/12/ 2

tt mkii tt rrT Ψ=Ψ −−− δδ hh ,

where the Fourier transform is denoted by F and
the inverse Fourier transform by F-1. The
evolution of the wave function over a time
increment δt is calculated in a straightforward
way: first equation (2) is applied, then the result is

multiplied by htiVδ−e  and finally equation (2) is
applied again. Thus the evolution is approximated
by the product of a free particle evolution for one-
half the time increment, a potential only evolution
for a full time increment, and a final free particle
evolution for another half time increment. Fast
Fourier transform (FFT) is used to perform the
Fourier integrals. Attention must be paid to the
fact that FFT views both coordinate (r) and k
space (Fourier transform space) discretely and
presumes the periodicity in the function. The
detailed description of the physical and
mathematical background is given in Ref. [4].

(1),   eeee 22 hhhh tttt iiii δδδδ TVTH −−−− ≈



FIGURE 1. Time evolution of the 2D Gaussian
wave packet tunneling through a potential barrier.
The barrier located in the middle of the figures is
denoted by a grey vertical stripe. The probability
density is shown on the left row at different time
instants, the real part of the wave function on the
right row. The real part shows the wave nature of
the wave function, the distance between the wave
fronts is the wavelength. Interference patterns are
seen in the probability density while the wave
packet is interacting with the barrier.

Time-dependent Scattering in 2D

For the calculations of the evolution in time of two
dimensional Gaussian wave packets a 512 × 512
grid was used to span the region of coordinate
space of 256 × 256 atomic units (Bohr radius =
5.291772 × 10-11 m). The number of points in the
k space was also 512 × 512. The time increment
δt was chosen to 0.3 atomic time unit (7.2 × 10--18

s). The probability density function | ),( trΨ |2 and

the real part of the wave function Re( ),( trΨ ) are

shown in the form of 2D color graphs (displayed
at different time instants) which can also be used
for computer animation.

Calculations of time-dependent scattering on
different potentials were performed. One of the
results, the evolution of a Gaussian wave packet
tunnelling through a potential barrier is
demonstrated in Figure 1. The particle is
approaching a thin rectangular potential barrier
(of 3 Bohr) separating the two regions.
Classically, the kinetic energy of the particle is not
enough to pass the potential barrier (it is less
than the height of the barrier). When the wave
packet is moving toward the potential barrier in
the constant (zero) potential region its shape
does not change, except it is spreading out.
When the leading edge of the wave packet
reaches the potential barrier oscillations occur in
the wave packet caused by the interference
between the incident and reflected waves. After a
transitory period the wave packet splits into two.
The reflected wave packet is returning to the left.
The second one, the transmitted wave packet of
probability propagates towards the right,
demonstrating that there is a finite chance for the
particle to tunnel through the classically forbidden
region. Computer animation showing the details
of the tunneling process (and scattering on other
potentials) is available on the web [5].

Time-dependent Scattering in 3D

Recently the investigation of nanostructured
materials is a subject to great interest.
Scanning tunneling microsocpy (STM) provides
information both about the topographic and
electronic structure on the nm scale. However,
because of the complex geometry of the system,
the interpretation of the images is delicate. Due to
this, computer simulation of the tunneling process
is an important tool in understanding the



measured results. This can be done by the
numerical solution of the time-dependent
Schrödinger equation. In many cases, depending
on the geometry and symmetry of the
arrangement, results of the 2D calculations
provide valuable information. But in lack of
symmetry only the solutions in three dimensions
provide a full picture of the tunneling process.
Although it requires much more computation, the
job can be done on the recent powerful personal
computers. A nice example is the 3D time
dependent study of the tunneling of the electron
wave packet through a supported carbon
nanotube in the STM [6].

Study of electron transport through carbon
nanotubes is of great scientific and practical
importance because their interesting electronic
properties make them one of the building
elements of future nanoelectronic devices.

The model system geometry used in the
calculation is shown in the upper left panel of
Figure 2. The carbon nanotube is modeled by a
cylinder of 0.5 nm radius floating above the
support plane at a distance of 0.335 nm. The
STM tip is taken as a hyperboloid of 0.5 nm apex
radius. The chosen value of 0.4 nm for the tip -
carbon nanotube tunnel gap is consistent with
that estimated from the STM experiments. A two-
valued potential was used as a model of the STM
tip - nanotube - support system. The potential is
zero in the vacuum and –9.81 eV inside the tip,
below the support surface and between a 0.142
nm thin cylindrical layer centered on the tube.
See Ref [6] for details.

By numerically solving the time-dependent 3D
Schrödinger equation the evolution of a Gaussian
wave packet approaching the tunnel junction from
inside of the tip bulk was calculated. The time
dependent probability density function, | ),( trΨ |2

is visualised by snapshots of a constant density
surface in Figure 2. In the panel t = 0.0 fs of
Figure 2 the initial wave packet is shown. The
sphere surface is clipped at the upper boundary
of the presentation box. At t = 1.4 fs the wave
packet has already penetrated into the tip apex
region. The part reflected back into the tip bulk
forms interference patterns with the incoming
wave. A fraction of the wave packet just begins to
enter into the tip - carbon nanotube interface.
At t = 2.1 fs the wave packet flows around the
tube and simultaneously tunnels through it. The
incoming and outgoing waves form interference
patterns in the tip apex region.

FIGURE 2. Time evolution of the probability
density of the 3D wave packet approaching the
STM junction from the tip bulk and tunneling
through the nanotube into the support. The upper
left image is the model system used in the
calculation. The labeled box is the presentation
box. All dimensions are in nm. The subsequent
images show snapshots of a constant probability
density surface. This surface is clipped at the
presentation box boundaries (upper, lower, right,
left, front, rear).

When the two wave packet parts (one moving on
the left side and another on the right side of the
tube) meet at the lowest point, standing wave
patterns begin to form along the tube
circumference. Subsequently the wave packet
tunnels through the carbon nanotube - support



junction and enters into the support surface (at
t = 3.5 fs). In the meantime the probability density
is gradually spreading along the tube axis.
At t = 4.2 fs the carbon nanotube - support tunnel
channel begins to open along the tube axis. The
3D tunneling calculation made it possible for the
first time to study the phenomenon of wave
packet spreading along the carbon nanotube
during the tunneling event. This spreading can
explain the features of the STM image. Computer
animation showing the details of the tunneling
process is available on the web [7].

CONCLUSIONS

High performance personal computers and
workstations combined with efficient numerical
techniques opened new perspectives for teaching
quantum mechanics, in particular time-dependent
scattering. The presentation of the results
obtained in a graphical form contributes to the
understanding of the concepts and phenomena
studied; the images calculated at different time
instants can be used for animation. Recently the
solution of the 3D time-dependent Schrödinger
equation is already a reality as it has been
demonstrated on the example of the simulation of
tunneling of electrons through carbon nanotubes
in a scanning tunneling microscope.
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