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In order to study local and global order in butterfly wing scales possessing structural colors, we have
developed a direct space algorithm, based on averaging the local environment of the repetitive units building
up the structure. The method provides the statistical distribution of the local environments, including the
histogram of the nearest-neighbor distance and the number of nearest neighbors. We have analyzed how the
different kinds of randomness present in the direct space structure influence the reciprocal space structure. It
was found that the Fourier method is useful in the case of a structure randomly deviating from an ordered
lattice. The direct space averaging method remains applicable even for structures lacking long-range order.
Based on the first Born approximation, a link is established between the reciprocal space image and the optical
reflectance spectrum. Results calculated within this framework agree well with measured reflectance spectra
because of the small width and moderate refractive index contrast of butterfly scales. By the analysis of the
wing scales of Cyanophrys remus and Albulina metallica butterflies, we tested the methods for structures
having long-range order, medium-range order, and short-range order.
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I. INTRODUCTION

The optical reflectance of butterfly wings often shows pe-
culiar features, i.e., their bidirectional reflectance distribution
function (BRDF) [1] is markedly different from that of
simple matt “painted” surfaces, with diffuse, lambertian [2]
reflectance. The most well-known optical phenomenon seen
in butterfly wings is the so-called iridescence [3], when the
hue of the butterfly wing changes with the angle of observa-
tion and/or illumination. Butterfly wings often have a shiny,
metallic appearance, i.e., the reflectance as a function of the
angle of observation has a sharp peak. Some butterflies, or
beetles produce a very bright white [4,5] or very dark black
[6] appearance, also the reflectance can be polarization de-
pendent [7]. These nonlambertian BRDF functions are gen-
erally not produced by pigments, but by a microstructure or
nanostructure whose optical properties change in the length
scale of the wavelength of the visible (or near-UV, or near-
IR) light. The specific BRDF features are produced by con-
structive and destructive interference of the electromagnetic
waves scattered on these microstructures or nanoarchitec-
tures. Even when the optical properties of the materials
building up these nanoarchitectures do not show significant
wavelength dependence in bulk form, the BRDF function of
the microstructure can still show wavelength dependence.
Colors produced by this mechanism are called “structural
colors,” or “physical colors”—in contrast to “pigmentary
colors” or “chemical colors” produced by pigments. Butter-
fly scales are nanocomposites built of mostly two basic com-
ponents (air, n=1 and chitin, n=1.56). Biological materials
are always multifunctional, i.e., the butterfly wing is not only
an “optical device” but has a specific aerodynamical func-
tion, and certain specialized scales are often used to distrib-
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ute scents (pheromones) [8,9], and may play a role in the
thermal management [10] of the animal, too. The spatial di-
mension of a wing scale is limited, its thickness is generally
only 1-2 wum and its lateral extension is 50—100 wm.

Butterfly scale microstructures can be classified by a num-
ber of ways [11], a detailed classification from the point of
view of biology was given by Ghiradella [12]. Very briefly,
butterfly wing scales are flat sacs of dried cuticle. While the
lower (closer to the wing membrane) side is generally struc-
tureless, the upper side may have a complicated structure.
The most general element of this, eventually complex mi-
croarchitecture, or nanoarchitecture are regularly arranged
ribs (rodlike features), running parallel with the longer axis
of the scale, which may be connected by crossribs. The in-
side of the scale is often filled by nanostructured chitinous
material, which causes [13] the structural colors. One of the
simplest classification of the nanoarchitectures found in but-
terfly scales from a physicist’s point of view is whether it has
a structure in the length scale of the wavelength of visible
light in one, two, or all the three dimensions (1D, 2D, and
3D structures). If this spatial variation is periodic (or quasi-
periodic), the structure may be called a photonic crystal as
introduced by Yablonovitch [14]. 3D photonic crystals are
found in the scales of many butterflies [15-19]. In a very
suggestive way, entomologists called the scanning electron
microscopy (SEM) images of certain kind of 3D nanostruc-
tures “pepper-pot” structure [20] to designate a structure re-
sembling that of inverted opal.

Direct access to the 3D microstructure is possible by elec-
tron tomography [21,22] and even by x-ray tomography [23]
but the practical and widespread application of these meth-
ods would require a significant improvement in technology.
Most important tools to analyze the microstructure of butter-
fly wing scales are SEM and transmission electron micros-
copy (TEM). Top-view SEM images provide information,
however, about the topmost layer only and the sample prepa-
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ration (deposition of sputtered gold) may distort the appear-
ance of the nanostructures on the images. Cross-sectional
TEM images do give access to the in-depth structure of the
scales, but the precise direction of the cut is generally not
known—an uncertainty of 5-10° is common— and the
samples are sometimes distorted during the preparation pro-
cess. Both methods give basically 2D information and it is a
non trivial task to determine the real 3D structure of the scale
based on SEM and TEM images.

A careful correlated examination of the SEM and TEM
images [18] has to be carried out in order to obtain the full
3D structure. Recently Stavenga et al. [24] showed, by an
analysis of formerly published SEM and TEM images that
several of the 3D cuticular structures in the lycaenid and
papilionid species can be modeled by a so called gyroid
structure, a bicontinuous triply periodic structure with a
body-centered cubic (BCC) Bravais lattice symmetry.

As shown in the theory of photonic crystals [25], only 3D
photonic crystals can have a complete photonic band gap
(PBG), but because of the moderate refractive index contrast
and also of the small thickness in butterfly wings the PBG is
generally not “perfect,” i.e., the reflectance in the PBG wave-
length range is no 100%. Crystalline order, however, is not a
necessary condition of the existence of PBG, amorphous ma-
terials can also have a PBG [26] independent of incident
direction, if a short-range order is present.

It is remarkable, however, that not only nonlambertian
BRDF functions, but also lambertian ones (i.e., those having
an appearance of a normal matt surface) can be produced by
scale microstructures [18]. Metallic-like reflectance, i.e.,
emergence angle selection is related to the photon momen-
tum conservation, which follows from total or partial trans-
lational invariance in the diffusing surface structure. Hence
the metallic-like reflectance is associated with highly corre-
lated structures [3,17]. Lambertian scattering, by contrast,
seems to always involve some form of long-range disorder.
As we have shown recently [18], the very same butterfly can
show both phenomena—shiny and matt reflectance—both as
a result of microstructure. Indeed, the dorsal scales of the
butterfly Cyanophrys remus are photonic single crystals of
dimension 50 X 120 um>—this is responsible for the metal-
lic blue appearance of the dorsal wing—while the color gen-
erating scales on the ventral wing surface are photonic poly-
crystals, i.e., an assembly of photonic crystallites of micron
size, with a random long-range distribution in the orientation
of the grains, this is responsible for the matt green color of
the ventral wing. Both the shiny reflectance and the diffuse
reflectance have specific biological function for the indi-
vidual. Shiny dorsal reflectance is used for signaling, which
is crucial for sexual communication, therefore the color is
under sexual selection. The ventral matt color has a cryptic
function serving as a generalized camouflage function, thus
affected by natural selection [27].

To be able to get deeper insight in the intricate ways, in
which natural evolution structured the photonic crystal type
nanoarchitectures even when these nanoarchitectures do not
exhibit a long range order, we developed an analytical
method. This method will be presented in the paper by ap-
plying it to two butterfly species we investigated earlier, both
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FIG. 1. (Color online) Scanning electron microscopy image of a
dorsal wing scale of Cyanophrys remus, from Ref. [18]. The white
and black lines at 60° rotations were inserted to help the eye to
recognize the long-range order. The inset illustrates the real space
averaging algorithm (see text for details).

of them exhibiting blue and green colors originating from
photonic nanoarchitectures: Cyanophrys remus [18] (dorsal:
shiny metallic blue, ventral: matt green) and Albulina metal-
lica [19,28] (dorsal: blue, ventral: silvery green).

The organization of the paper is as follows. In Sec. II, the
real space averaging method is introduced. In Sec. III, we
apply the method to three characteristic examples, one pos-
sessing long range periodicity (Cyanophrys remus dorsal
wing surface), another with medium range order (Cy-
anophrys remus ventral wing surface), and one with short-
range order (Albulina metallica). It will be discussed in de-
tail in this section, how the randomness, which is inherently
present in the nanoarchitectures of biological origin, influ-
ences the light scattering process. In Sec. IV, we turn to the
investigation of TEM sections and their Fourier images. By
systematic analysis of different distortions of a perfect lattice
we identify the signatures of disorder in the Fourier power
spectrum. This Section contains a modified version of the
method of Prum [29] to predict the spectrum from the Fou-
rier image. Section V is devoted to the discussion of the
results.

II. DIRECT SPACE AVERAGING METHOD

Because of their very biological origin, butterfly wing
structures are not as regular, as crystals in solid state physics.
In order to determine the characteristic symmetries and di-
mensions of these structures with good statistics, it is neces-
sary to perform tedious measurements on the SEM and TEM
images. Fourier transform, as a mathematical tool is widely
used to reveal the periodicities in a structure. This is very
useful, when the long-range order is disturbed by a short-
range disorder or there are several periodicities present in the
structure. Both of these factors are in fact present on the
SEM images of the dorsal scales of Cyanophrys remus, as
shown on Fig. 1. It is not an easy task to recognize the long
range periodicity of the pepper-pot structure on this image by
mere visual observation. Fourier analysis, however, clearly
shows (see Fig. 6 of [18]) that the reciprocal space image is
a convolution of a smaller scale triangular structure (corre-
sponding to the small holes) and a larger scale rectangular
structure (corresponding to the windows).
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FIG. 2. (Color online) Comparison of the dorsal and ventral
wing surface of the Albulina metallica butterfly. (a) and (b) Optical
images. (c) and (d) Scanning electron microscopy images. (€) and
(f) Two-dimensional Fourier power spectrum of the SEM images
shown on (c) and (d). White corresponds to zero intensity and black
to maximum intensity. Wave number (wavelength) scale is shown
on the lower and left (upper and right) axis, respectively.

Reciprocal space methods give information about the pe-
riodic structures building a photonic crystal and also provide
a quantitative measure of the irregularity of the structure.
The Fourier method, however, is effective only if the image
does have a long range order. Moreover the Fourier tech-
nique requires a SEM image containing a fairly large number
of spatial periods, which is often not available on micro-
graphs of butterfly scales.

Figures 2(a) and 2(b) shows photos of the dorsal and ven-
tral wing surfaces of the butterfly Albulina metallica. The
dorsal surface has a blue coloration, while the ventral side is
silvery green. Despite this difference of the visual appear-
ance of the two wing sides, at the first glance no character-
istic difference is seen between the SEM images of the dorsal
(ventral) sides, cf. Fig. 2(c) and 2(d). Neither the Fourier
transform of these SEM images, Figs. 2(e) and 2(f), shows a
marked difference, though we recorded special, large size
(12X 12 pm?), and high-resolution (2048 X 2048 pixel)
SEM images in order to provide good accuracy of numerical
Fourier transformation. The reciprocal space images (Figs.
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2(e) and 2(f)) have a similar structure. The series of strong
black dots arranged in a line, with direction perpendicular to
the direction of ridge lines seen in Figs. 2(c) and 2(d) corre-
spond to the regular series of ridges. Apart from the first
order peaks the 2nd and 3rd order peaks have a large ampli-
tude because of the anharmonicity of the ridge structure. The
series of gray dots arranged in a line perpendicular to the line
of the strong black dots correspond to the crossribs. These
dots have a smaller amplitude and larger spread because the
arrangement of the crossribs is not as regular as that of the
ridges. Both Fourier images show a diffuse gray disk cen-
tered at the origin. These disks correspond to the array of the
small holes (i.e., to the pepper-pot structure). No inhomoge-
neities can be seen in the disks, apart from the random fluc-
tuation, which shows that there is no long-range order in the
pepper-pot structure. The fact that the diameter of the disks is
finite indicate, however, the presence of a length scale in the
pepper-pot structure, i.e., the presence of a lower limit for the
distance of the small holes. The diameter of the gray disk on
Fig. 2(e) [dorsal fast Fourier transform (FFT) image] is
larger than that on 2(f) (ventral FFT image), which shows
that the lower limit for the hole distance is smaller on the
dorsal wing surface SEM image than on the ventral wing
surface SEM image. This is in accordance with the visual
appearance of the two wing sides: the dorsal side (with
smaller average hole distance) is blue, while the ventral side
(with larger average hole distance) is green. (As it is shown
in Sec. V, the average refractive index is nearly the same for
the two sides.)

In order to study the local order in TEM and SEM images
of butterfly scales, we have developed a simple direct space
algorithm, based on averaging the local environments of the
scattering sites. The method provides the statistical distribu-
tion of the local environments, including the histogram of the
nearest-neighbor distance and the number of nearest neigh-
bors.

The direct space averaging method assumes that the SEM
image of the 3D microstructure contains repetitive units. In
the case of pepper-pot structures the repetitive units are the
small, dark holes seen on the SEM images This generally
applies to the SEM images of butterfly scales containing
pepper-pot nanostructures, see Fig. 1 for a characteristic ex-
ample.

The algorithm of the direct space averaging method is as
follows:

(i) FOR each hole

(a) FIND center of the hole: 7,
(b) SHIFT the image with 7=,

(ii) AVERAGE gray values of all shifted images

The algorithm is illustrated on the inset of Fig. 1. It shows
a detail of the SEM image of Fig. 1. The arrows pointing
from three, arbitrarily selected holes to the origin show the
Fehift=—Tpote Vectors, along which the image is shifted such
that the center of the corresponding hole is translated into the
origin. In the real algorithm this hole selection and image
shift operation is repeated for all the holes found on the
image. The first step, the finding of the center of each holes
is performed by first binarizing the image (after an applica-
tion of a moderate amount of median and smoothing filter-
ing) then by determining the center of gravity of the holes.
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FIG. 3. (a) Result of the real space averaging algorithm for the
SEM image of a dorsal wing scale of Cyanophrys remus. Note the
hexagonal arrangement of the nearest neighbors and the long-range
correlation between the different windows and between the neigh-
boring window rows. (b) Radial distribution function of the center
points of the holes seen on the SEM image of the dorsal wing scale
of Cyanophrys remus.

SEM images are finite rectangular arrays of pixels and we
have to decide how to handle the effect of the edges of the
images during the shift operation. A suitable solution is not
to shift the whole image, just only a subimage centered on
the hole under processing. After determining the 7, posi-
tion of a given hole, we cut a small square window centered
on the hole out of the SEM image. The size of this window
has to be about 10a for pepper-pot structures possessing
long-range order (e.g., Cyanophrys remus, cf. Fig. 3) and
about 4a for those of short range order (e.g., Albulina metal-
lica, cf. Fig. 5), where a is the average distance of the holes,
its typical value is 200 nm. Those holes closer the edge of
the image than the half of the small window size are left out
of the averaging. For real SEM images of butterfly scales this
solution is perfectly suitable, because the SEM images are
much larger, than the size of the small window, hence, only a
thin border region is left out of the averaging.

III. APPLICATION OF DIRECT SPACE AVERAGING

A. Long-range order

Figure 3 shows the result of the above described real
space averaging method for the dorsal wing surface SEM
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image of the butterfly Cyanophrys remus, together with the
radial distribution function (RDF) of the center of the small
holes. Although the long-range order of the small holes is
only visible by a careful observation on the SEM image it-
self, cf. Fig. 1 the presence of the long-range order becomes
obvious on the real space averaged image. Indeed, the corre-
lation is present for more than 10 neighbors and it is even
seen between windows separated by the ridges. The small
holes clearly form a triangular lattice, i.e., each hole has six
nearest neighbors placed on the vortices of a regular hexa-
gon. The RDF function is zero for small distances, which
shows that the holes “does not like” to come close to each
other. There is a sharp and high nearest-neighbor peak, the
second and third neighbor peaks are also pronounced. The
higher order peaks, which are very well seen on Fig. 3(a) are
suppressed on the RDF function by the azimuthal averaging.
The wide peak seen at 1700 nm corresponds to the correla-
tion of the windows between neighboring window rows
(separated by a ridge). One can see small peaks on the top of
the wide peak, this shows the presence of the correlation
between the small holes seen in the neighboring ridge rows,
as it is also very well seen on Fig. 3(a). No random noise is
visible on the RDF function, this is because of the good long
range correlation and the large integrating area.

B. Medium range order—granular structure

The wing scales on the ventral side of the Cyanophrys
remus butterfly have a granular structure, as it was analyzed
in detail in [18]. As we have shown in [18] the ventral scales
are “photonic polycrystals” composed of crystallites with
3-5 um typical lateral diameter. TEM images (cf. Fig. 7 of
[18]) clearly show a crystalline order within each grain. On
the SEM image, Fig. 4(a), however, it is not so obvious to
note the ordered structure, because of the ridges and cross-
ribs and also of the random disorder. Direct space averaging
“transforms out” these two factors, hence the crystalline or-
der becomes obvious on the direct space averaged images,
Fig. 4(b). The different subimages show different symmetries
and orientations, which correspond to different lattice planes
of a 3D crystalline lattice. The reflected colors computed for
these lattice planes were identified experimentally by optical
microscopic investigation of the scales [18]. Combined effect
of different colors gives the matt appearance.

C. Short-range order

Figure 5 shows the result of the real space averaging
method for the dorsal and ventral side SEM images of the
Albulina metallica butterfly, together with the RDF of the
small holes. We can see that, contrary to the case of Secs.
IIT A and III B only the first neighbor shell shows a good
radial correlation, though the second and third neighbor
peaks are also visible on the RDF function. Random noise on
these images is more pronounced than on Fig. 3 because of
the lack of long range order.

When comparing the dorsal and ventral wing surfaces, the
position of the first neighbor peak is at 209 nm for the dorsal,
and at 261 nm for the ventral case (see Table I for details).
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FIG. 4. (Color online) (a) Scanning electron microscope image
of the grain structure seen on a ventral scale of the Cyanophrys
remus. The numbered contours show the regions selected for direct
space averaging. (b) Results of direct space averaging for the num-
bered regions from (a). Note the different ordered structures.

The first neighbor peak is more pronounced at the dorsal
side. The angular correlation is also much weaker in the case
of Albulina metallica than for the Cyanophrys remus but we
can see slightly larger angular correlation of the first neigh-
bors on the ventral side than for the dorsal. The peak at 700
nm on the ventral RDF function corresponds to the correla-
tion of the windows separated by crossribs, this is not so
pronounced on the dorsal side.
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FIG. 5. (a) and (b) Result of the real space averaging algorithm
for the SEM image of a dorsal (ventral) wing scale of Albulina
metallica. Note the presence of short range order and the lack of
long range order. (c¢) and (d) Radial distribution function of the
center points of the holes seen on the SEM image of the dorsal
(ventral) wing scale of Albulina metallica.
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IV. ESTIMATION OF THE REFLECTANCE SPECTRUM
A. Analysis of the TEM images

In order to reveal the in-depth structure of the scales,
TEM investigations were taken, Fig. 6 shows the TEM re-
sults for the dorsal and ventral scales. In the interpretation of
the TEM images one has to have in mind a number of par-
ticularities of TEM sample preparation, discussed to great
detail in [18]. Briefly:

(i) The object of study has to be produced as a section of
around 100 nm thickness (70 nm in our work) to make it
transparent for the electrons.

(ii) This is achieved by incorporating the object in a spe-
cial resin followed by ultramicrotoming with a diamond
knife (both faces of the slice are produced by cutting), the
shear to which the thin slice is subjected during this process
is rather high, it often causes the exfoliation of the resin from
the object.

(iii) Due to the slice thickness, to the high shear and due
to the fact that the dimensions of the walls separating the
holes are in the range of 80-90 nm, a cutting plane even
marginally misplaced from the line rigorously joining the
centers of the adjacent holes can result in several solid re-
gions separating adjacent holes being missing.

(iv) Even when the little “column” joining two adjacent
filled layers in the TEM image is missing its “footprint” can
be identified as undulations of the upper/lower layers.

On Figs. 6(c) and 6(e) the cutting was done perpendicular
to the ridges, indeed, the dorsal and ventral ridge distances
measured on these TEM images match that resulting from
the SEM images (cf. Table I). The circular holes indicate the
presence of some hollow spatial structure, whose cross sec-
tion is circular. On Figs. 6(d) and 6(f), however, the apparent
ridge distances are about 1.7 times larger, but the layer dis-
tances are still comparable with that measured on Figs. 6(c)
and 6(e). Note that the ridges on Figs. 6(d) and 6(f) are not
only farther away, but also have an elongated shape, as com-
pared with that on Figs. 6(c) and 6(e). These findings can be
understood if we suppose that the sections imaged on d and
f were cut not perpendicular to the ridges but under a certain
angle, see Figs. 6(a) and 6(b) for illustration. Note, however,
that the small holes on Figs. 6(d) and 6(f) are not elongated
along the lateral direction, as they should appear, if, for ex-
ample the hollow spaces were cylindrical. Moreover, the av-
erage lateral hole distances on Figs. 6(c) and 6(e) match
those measured on Figs. 6(d) and 6(f), respectively. The fact,
that the holes are circles among the Figs. 6(c), 6(¢e), 6(d), and
6(f) images can be explained if we suppose that the hollow
spaces are spherical air holes, or bubbles inside the chitin
matrix. The size of the holes, however, is varying on the
TEM images. This is caused by the random arrangement of
the air spheres, the cutting plane intersects the spheres at
different positions. The apparent density (gray level) of the
wall between the spheres is also varying in the lateral direc-
tion, from the black through gray to completely white. This
is caused by the finite thickness of the cut slice. The inter-
layer boundaries are nevertheless always completely dense
(black) on the TEM images, this shows that the transversal
order is larger than the lateral order, i.e., the spheres are
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TABLE 1. Results of distance measurements performed on the micrographs of the wing scales of Albulina
metallica. “Ridge:” distance of the ridges, “hole RDF:” distance of the holes calculated from the RDF
function, “layer;” layer distance, “lateral upper:” distance of the holes in the upper layer.

Method Quantity Dorsal average Dorsal stdev Ventral average Ventral stdev
SEM Ridge 1430 123 1685 169
SEM Hole RDF 209 49 261 64
TEM Ridge 1252 92 1580 80
TEM Layer 203 38 257 29
TEM Lateral upper 200 29 272 62

arranged into layers but they are randomly distributed inside
the layers.

As we can see in Table I, the average lateral interhole
distances measured on the dorsal and ventral TEM images
match the first neighbor positions of the dorsal and ventral
SEM. RDF functions, see Fig. 5. These numbers in turn
match the interlayer distances measured on the TEM images,
see Table 1.

B. Ewald sphere approximation

Prum et al. [29] proposed a simple and universal proce-
dure of estimating the reflectance spectrum from the TEM
images. They first calculate the two-dimensional Fourier
power spectrum (2D FFT) of the binarized TEM image then
they estimate the reflectance spectrum by angular averaging
of the power spectrum for the whole [0,27) range or for 7/6
wide sections. This heuristic approach is based on basic scat-
tering theory [30]. The scattering intensity is given by

1(k; ko) = f p(f)exp(,-if)de, (1)
Nefy

FIG. 6. Cross-sectional transmission electron microscopy im-
ages through the wing scales of Albulina metallica. TEM images in
the left column were made on a section perpendicular to the ridges
and to the scale surface, as illustrated in (a), TEM images in the
right column were made on a section at an oblique angle to the
ridges but perpendicular to the scale surface, as illustrated in (b). (c)
and (d) Dorsal scales. (e) and (f) Ventral scales. For results of dis-
tance measurements performed on these images, see Table 1.

where p(7) is the density of scattering centers, lgo is the wave
vector of the incoming light, k is the wave vector of the
outgoing (reflected or transmitted) light (|ko|=|k|=27/\ in
case of elastic scattering), G=k—k, is the scattering vector,
and n, is the effective refractive index of the medium. The
integral is a D dimensional integral, D=3 in 3D calculations,
but D=2 if the scattering is considered only in a plane, as
was done in [29]. This equation can be graphically demon-
strated by the so called Ewald construction, see Fig. 7, which
is widely used in the theory of X-ray scattering. See Sec. V
for a detailed analysis of the approach used in [29].

C. Signatures of disorder in the Fourier power
spectrum of TEM images of butterfly scales

If a structure has a perfect long range order, its Fourier
transform is composed of distinct peaks. This situation, illus-
trated in Fig. 8(b) is seen in x-ray scattering images in solid
state physics, because atomic or molecular crystals have very
regular structures. If the real space structure is not as regular
as crystals in solid state physics, as is the case in biological
systems, the Fourier transform is not any more composed of
Dirac delta like peaks, but it has a complicated, continuous
distribution in reciprocal space. The denomination “random-
ness,” however, is not well defined, there can be several
kinds of “randomnesses” present in the image, hence a care-

FIG. 7. (Color online) Ewald sphere construction illustrated for
the case of a two-dimensional Fourier power spectrum of a TEM
image. A case of perpendicular light incidence (EO) and oblique
observation (k) is shown. See the text for details.
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FIG. 8. Effect of randomness and of the finite number of layers
on the Fourier power spectrum. (left) Real space images. (right)
Reciprocal space images. (a) and (b) Perfect rectangular lattice. (c)
and (d) Random horizontal displacement of the layers. The lattice is
perfect inside each layer. (e) and (f) Random horizontal displace-
ment of the lattice sites inside the layers. The layers are identical.
(g) and (h) Four layers, perfect rectangular lattice. (i) and (j) The
vertical density distribution (p) and Fourier power density distribu-
tion (|p]) in the central column (x=0,k,=0) of (g) and (h). Dimen-
sionless units are used in all subimages. See the text for details.

ful analysis is necessary to separate the different effects.
Figure 8 demonstrates the effect of some characteristic ran-
domnesses on the Fourier image. Real butterfly scales are 3D
structures, but we used 2D lattices to demonstrate the differ-
ent “randomnesses” in this Subsection, because it is easier to
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demonstrate the phenomena in 2D and these same phenom-
ena are present in 3D.

Figure 8(a) shows a rectangular section of a perfectly
regular and infinite 2D square lattice. Its Fourier power spec-
trum, shown on Fig. 8(b), is a square lattice of distinct peaks.
The intensity of the peaks is decreasing with the distance
from the origin, this decrease is faster if the objects placed on
the lattice points of the real space lattice are larger. As we
know from the theory of x-ray scattering, if N objects of
density o(7) are placed in the points of the direct space lat-
tice {’71'}5\;17 the total scattering of the system is given as the
product of the lattice factor (Fourier transform of the lattice)
and the so called atomic form factor (Fourier transform of
©(F)). The Fourier image is composed of distinct peaks in the
horizontal (vertical) x (y) direction if the lattice has a long
range order in the x (y) direction.

Figure 8(c) shows the same lattice, but each lattice layer
is randomly displaced horizontally. We can see in Fig. 8(d)
that the Fourier image is composed of vertical lines. This is
because the random displacement of the layers destroys the
perfect translational symmetry in y. The image is still com-
posed of discrete lines, because the layers still have a perfect
translational order in the x direction.

Figures 8(e) and 8(f) shows the effect of the disorder
present in the layers themselves. This time a random hori-
zontal displacement (with a Gaussian distribution) was ap-
plied to the points of one layer and this layer was repeated
infinitely in the y direction, the layers have the same struc-
ture. The Fourier image shows distinct horizontal lines. In-
deed, each reciprocal lattice point is broadened in the x di-
rection because of the random x displacement of the points,
but the translational order is present in the y direction be-
cause the layers have an identical structure.

It was assumed so far, that the direct space lattice is infi-
nite. Figure 8(g) shows the effect of the spatial confinement
of the system, it is composed only of four layers, but the
layers are assumed to be infinite in the x direction. As seen
on Fig. 8(h), the Fourier peaks are broadened in the y direc-
tion and satellite peaks appear between the original peaks.
This is caused by the vertical confinement of the system.
Indeed, a finite lattice of n, layers in the vertical direction can
be described as

p(y) =p(»)O(y;n), (2)

where p(y) is a periodic function with period a and O(y;n;)
is a square window function of n; periods width, defined as

O(in) 1, if |y| <any2; 3)
O(y;ny) = i .

Yo 0, otherwise

Utilizing the convolution theorem we receive the Fourier
transform of p(y) as follows

21 < sina(5-ny
k) = \/;; Do e

Py

J=—°

where w=27/a and the ¢; are the quotients of the Fourier
series of the periodic function p(y). Taking into account that
the sin 7(k/ w)/(k/ w) kernel has zero nodes at Tw, = 2w, ...
there are n;—1 zero nodes and n;,—2 extrema between n,;j and
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FIG. 9. (a) Processed cross-sectional transmission electron mi-
croscopy image through a ventral scale of Albulina metallica. A
background correction and a binarizing filter was applied to the
image on Fig. 6(e) (see the text for details). (b) Fourier power
spectrum of the processed TEM image shown in (a). White corre-
sponds to zero intensity and black to maximum intensity. Wave
number (wavelength) scale is shown on the lower and left (upper
and right) axis, respectively. The lines illustrate the procedure of the
calculation of the backscattered spectrum from the Fourier image.
The inset shows the Fourier image and the procedure of the spec-
trum calculation for a model image, Fig. 8(c).

ni(j+1). This is illustrated in Figs. 8(i) and 8(j), Fig. 8(i)
shows a function constructed as a sum of four Gaussians
placed on an equidistant grid and Fig. 8(j) shows its Fourier
power spectrum. We can see three zero nodes and two
maxima—exactly as in Fig. 8(h).

This all said we are in the position to understand the Fou-
rier image of a real sample. As it was explained earlier (see
Sec. IV A), the apparent density of the walls between the
holes is varying because of the TEM sectioning process. In
order to compensate this artifact we processed the TEM im-
age of the ventral scale (Fig. 6(e)) by a background correc-
tion and a binarizing filter. The resulting black and white
image is shown in Fig. 9(a). Figure 9(b), is the Fourier power
spectrum of the so constructed direct space image. The ver-
tical structure A"—O—A" corresponds to the layer structure,
cf. Figs. 8(i) and 8(j). Note that there are two minima and
one maximum between each pair of main peaks, which cor-
responds to the presence of three layers. The peaks at A~,A*
are broadened horizontally because the layers are not per-
fectly flat but wavy. The vertical bars at B~, B* correspond to
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FIG. 10. Reflectance spectra of the Albulina metallica wings
recorded at backscattering arrangement at several angles. All spec-
tra were measured relative to a diffuse white standard. Black corre-
sponds to zero intensity and white to maximum intensity. A nonlin-
ear gray scale is used to facilitate presentation. Black dotted lines
show the wavelengths with maximum intensity for each angle. (Up-
per) dorsal wing surface and (lower) ventral wing surface.

the lateral order of the holes, cf. Figure 8(b). These Fourier
peaks have a finite thickness in both the horizontal and ver-
tical direction because the holes are randomly arranged in the
layers [cf. Figure 8(e)] and the layers have different micro-
structure [cf. Figure 8(c)].

D. The reflectance spectrum

Figure 10 shows the I(\, @) reflectance spectrum of the
dorsal and ventral hindwing of the Albulina metallica butter-
fly (cf. Figure 2) measured in a backscattered configuration
for the (0°-60°) angle range for the dorsal wing and for the
(0°-75°) angle range for the ventral wing. Reflection peaks
measured on butterfly scales are always broadened, because,
on one hand, the structure has a randomness in the lattice (cf.
Table I), and because, the scales are not flat, on the other
hand. This latter factor is very well seen on the large scale
TEM image shown on Fig. 11. The \,,,,(¢) wavelength val-
ues belonging to the maximum intensity are given in Table II
and are shown by dotted lines in Fig. 10. Both the dorsal and
ventral \,,,.(¢) functions have a similar structure: N, (¢) is
first decreasing with increasing ¢, then it is again increasing.

V. DISCUSSION

The simple theory of reflectance spectrum calculation
based on Eq. (1) is valid with the assumptions that (i) the
incoming light is directly scattered on each inhomogeneity of
the n(7) complex optical index function; (ii) each scattered
wave is directly going into the detector; and (iii) no intensity
loss of the incoming and scattered waves occur. These as-
sumptions, generally called first Born approximation, are
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FIG. 11. Large scale cross-sectional transmission electron mi-
croscopy image through the wing scales of Albulina metallica. The
thick surface, denoted by letter “M” crossing horizontally through
the image is the wing membrane. Both the dorsal and ventral side of
the wing is seen, there are three dorsal scales (a, b, and ¢) and two
ventral scales (d and e) with photonic nanostructure on this large
scale image. Note that the scales are curved.

valid if the thickness of the system is small and the optical
index contrast is small. These assumptions are fulfilled in the
case of butterfly scales, with an optical index contrast of
Nepitin! Nair=1.56/1 and a thickness of 1-2 um. Multiple
scattering is negligible in such systems in general, as vali-
dated by transfer matrix theory [13,18] and finite difference
time domain (FDTD) calculations. The scales of many Lepi-
doptera and the elytra of quite a number of Coleoptera pos-
sess specialized micro and nanostructures that produce polar-
ization effects [7]. In most insects, the structure is locally
symmetric; hence, no macroscopic effects can be seen. In
certain species, this symmetry is partly broken, and a
polarization-dependent reflection can be observed [31]. No
such symmetry breaking is present in Albulina metallica,
hence, and unpolarized calculation based on Eq. (1) de-
scribes the reflection sufficiently.

According to Eq. (1), if an incoming plane wave of &,
wave vector is scattered into the plane wave of k wave vec-
tor, then the scattered intensity /(ky;k) is simply proportional
with the value of the 3D Fourier power spectrum at the point
G/n.gp where G=k—ky, as is graphically illustrated in Fig. 7.
The situation is especially simple in case of a backscattering
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geometry, when 122—/20:1’7277/7\, where 7 is the direction of
the scattering, because the scattering vector is g=2727/\.

For the case of normal backscattering from the ventral
wing surface of Albulina metallica we have to simply take
into account the intensity distribution (“line cut”) of the 3D
Fourier power spectrum (cf. Figure 9) along a vertical line
crossing the origin. The most pronounced peak is at A*,
which is corresponding to the layer distance dj4y,, i.€.,
OA*=2m/d,,,,. Hence, the peak position in I(\) is at
Niayers=20,/djqyer- This is the familiar formula for 1D pho-
tonic crystals (multilayers). Assuming a 2D close packed ar-
rangement of spheres inside layers and a simple stacking of
the layers in z direction the filling ratio of the spheres is
Viphere! V="/(3\3), and

neff= nairvsphere/v+ nchitin(l - Vsphere/v) = 1.22.
Replacing layer distances from Table I we receive

Normal _ o s 1 99 % 203 =495 nm (5)

dorsal —

Normal _ o 5 1,22 X 257 =657 nm.

ventral —

These numbers overestimate those measured at normal direc-
tion backscattering (cf. Figure 10 and Table II) by 15%
which is due to the fact that, as seen on SEM images (cf.
Figure 2), the chitin membrane between the layers of spheres
is a not continuous, holey structure. Inserting nf?;‘“”:l.OS
and an}’”“’: 1.12 gives the measured wavelengths.’

Next we turn to the study of the goniometric backscat-
tered spectra shown on Fig. 10. Only the analysis of the
ventral results is given here, the trend of \,,,,(¢) is similar
on the dorsal and ventral side, only the wavelength values
are smaller (cf. Table II). Prum et al. assumed that the den-
sity of light scattering centers (the quantity, that has to be
inserted into Eq. (1)) is identical with the binarized gray
value seen in TEM images,

ligh scattering centers _ bin(pTEM) ) (6)
If we assume, however, that the butterfly wing is composed
of chitin and air, light scattering occurs only at the bound-
aries of the two substances. Furthermore, according to elec-
tromagnetic wave theory, there is a 7 phase shift when the
light is scattered from the chitin-air interface. The first factor
means that not the binarized image itself, but its contours has
to be Fourier transformed, the second factor means that the
chitin-air boundary has to be taken into account with a nega-
tive sign. Both factors can be taken into account by taking

the derivative of the binarized image in the direction of k:

TABLE II. Measured and calculated wavelength values corresponding to the maximum reflected intensity
for the dorsal and ventral wing surfaces of Albulina metallica measured in the backscattered configuration.
Peak values calculated from the model are only given for angles where the model is valid.

0° 15° 30° 45° 60° 75°
Dorsal measured 440 407 397 428 468
Ventral measured 577 577 534 525 553 604
Ventral Fourier 592 560 539 492 555 607
Ventral model 577 445 545 608
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FIG. 12. Theoretical backscattered reflectance spectra calculated
from the Fourier power spectrum shown on Fig. 9. The dotted line
shows the spectrum calculated for the model in Fig. 8(c).

pligh scattering centers _ |V]g bin(pTEM)| . (7)

According to Fourier theory this only means, however, a
multiplication with —k in Fourier space, i.e., the I(\) spec-
trum calculated from Eq. (1) has to be replaced with I(\)/\,
which increases the weight of the shorter wavelength peaks
and also slightly shifts the peak positions toward the shorter
wavelength.

Butterfly wing scales are often curved. Figure 11 shows a
large scale TEM cross section through the wing of the Albu-
lina metallica butterfly, several dorsal and ventral side scales
are imaged on the “upper” and “lower” side of the wing
membrane (denoted by “M” on the image). The largest
angles of the scales measured on this image (defined as the
angle of the line section connecting two neighboring ridges
measured relative to the horizontal side of the image) are
—27° for scale “d” and +25° for scale “e” and the standard
deviation of the angle distribution is 8°. Hence not only a
line cut, but a conical section of width +—8° of the Fourier
power spectrum has to be taken into account when calculat-
ing the backscattered spectra. This conical section, denoted
by « is shown by the two black dashed lines in Fig. 9(b).
Figure 12 shows backscattered reflectance spectra calculated
using Eq. (7) from the Fourier power spectrum (cf. Figure 9)
of the TEM cross section of a ventral scale of the Albulina
metallica butterfly. The structure of this calculated 7,.,;.(\, ¢)
function is indeed similar to the measured one I,,,,(\,¢)
shown in Fig. 10: there is a large intensity peak at the normal
direction (¢=0), corresponding to the effect of the layer
structure and there is a branch with increasing \,,,,(¢) for
increasing angles. This branch is caused by the presence of
the small holes, as explained below. The small holes form
layers [cf. Figure 9(a)] and the holes are not completely ran-
domly arranged inside the layers but their RDF has a distinct
peak (cf. Figure 5), corresponding to a lateral order of the
holes. This peak, in turn, causes the two bars B~ and B* to
appear in the Fourier image Fig. 9(b). As it is shown in Table
II, peak positions thus calculated from the Fourier image
match well the measured peak positions. Without the divi-
sion by \, (cf. 7), however, the peak positions are at 30-50
nm higher wavelength.

The inset of Fig. 9(b) shows the Fourier image of an
idealized structure, where the lateral order is perfect in the
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layers, but the layers are randomly displaced in the lateral
direction. This corresponds to the model shown in Fig. 8(c).
The spectrum of this ideal structure can be calculated easily
and it is shown by the dotted line in Fig. 12. The point at A*
corresponds to the layer structure and it causes a peak to
appear at Njqys=2M1,7/dj4y., in the =0 (normal) backscat-
tered direction. The lines B~ and B* cause a peak to appear in
the backscattered direction ¢ when the vector ¢ crosses this
line, i.e., g(¢)=qy/sin ¢, where gy=27/d,y.,.;- Hence the
backscattered peak position for ¢ angle is

)\(()D) = 2neffdlateral sin ¢. (8)

This theoretical curve, shown as a dotted line in Fig. 12
matches the trend of the peak positions calculated from the
Fourier transform of the TEM section, Fig. 9(b), of the ven-
tral scale, see Table II. (Calculated values for 15° and 30° are
not given, the model being unrealistic for these angles. As
we can see on Fig. 9(a), the structures B~ does not extend
until such small angles and also for 15° the integrating angle
already “samples” structure A=.) dj,.,;=278 nm was as-
sumed in this calculation, which, taking into account the 62
nm standard deviation (cf. Table I) is a realistic assumption.

VI. CONCLUSIONS

We studied how order-disorder effects present in the
chitin-air micro and nanostructure of butterfly wing scales
influence their optical properties. As was shown by Prum et
al. [29], anatomically diverse butterfly scales all produce
structural colors by coherent scattering. bidirectional reflec-
tance distribution function of the scales depends on the range
of the order present in the structure. Though a short range
order is enough [30] to cause a peak in the reflectance spec-
trum (a color), but long-range order is necessary [18] in or-
der to have a shiny, metallic-like appearance. Fourier analy-
sis is an excellent tool to detect the long-range order, but it is
less useful for structures lacking long-range order. The real
space averaging method, presented in this paper, can be used
for every structure composed of repetitive units. The method
is based on the averaging of the local environments of each
of the units. We demonstrated this algorithm for three char-
acteristic examples, having long-range order (dorsal scales of
the Cynophrys remus butterfly), medium-range order (ventral
scales of the Cynophrys remus butterfly), and short-range
order (Albulina metallica butterfly).

A structure can deviate from a perfect long-range order in
many different ways, i.e., there can be several kinds of ran-
domnesses present in the structure. When the units compos-
ing the structure are displaced randomly from their position
defined by a perfect ordered lattice, i.e., there is a long-range
order “in the background” of the structure, Fourier methods
still remain useful, because reciprocal space peaks are only
broadened in this case. We have analyzed in detail, how the
different kinds of real space disorder influence the shape and
width of the reciprocal space peaks. The real space averaging
method is particularly useful in case of structures possessing
no background lattice, where Fourier analysis is less useful.
Optical spectrum of a butterfly scale is closely related to its
reciprocal space structure. Indeed, butterfly scales are thin
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structures with moderate refractive index contrast, hence, the
first Born approximation is applicable. Based on electromag-
netic wave theory, we showed that how the results of [29]
have to be applied for structures composed of two materials,
chitin and air. A detailed analysis of the TEM and SEM
images of dorsal and ventral wing scales of the butterfly
Albulina metallica showed that the scales are composed of
spherical air bubbles arranged in layers. The interlayer dis-
tance was found to match the intralayer distance of the air
holes. These predictions were verified by calculating the the-
oretical spectra from the Fourier power spectrum utilizing
the first Born approximation and a spectrum for an idealized
model.

The methods presented in this paper can be successfully
utilized in studying the relation of micro-nanostructure and
optical properties of not only butterfly wing scales, but also
other biological systems possessing structural colors, e.q.

PHYSICAL REVIEW E 80, 051903 (2009)

avian feather barbs and mammalian skin. But the signifi-
cance of the methods developed here may be even more far
reaching, since these can be well utilized in designing struc-
tures with a desired optical effect. Computational electrody-
namics [32] can predict the optical properties of a material of
known three-dimensional structure with high accuracy, but
the simple real and reciprocal space approximation methods
exposed in this paper remain useful because of their tractable
analytical properties.
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