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Intertube interactions in carbon nanotube bundles
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Energetics of pairs and seven membered bundles formed by achiral as well as chiral carbon nanotubes is
explored. The applied model Hamiltonian consists of a tight binding intratube part, an intermolecular hopping
term, and a Lennard-Jones pair potential. Heterochiral aligned tube pairs are found the most stable energeti-
cally. Rotation of tubes around the tube axis in an aligned pair of identical tubes requires the smallest energy
input if a cog-wheel rotation (disrotation) is exercised for heterochiral and achiral pairs or anti-cog-wheel
rotation (conrotation) for a homochiral pair. Energetic preference for disrotation in heterochiral identical pairs
manifests even for short (several nanometer long) tubes. Conrotation of homochiral pairs is hindered by end
effects and becomes favorable only if modeling long (infinite) identical tubes. Among achiral tubes, those that
possess a Cj, axis with odd n are shown to form close-packed bundles in an energetically optimal way.
Similarly, among achiral tubes those having a Cj, axis, n either even or odd can form an energetically

favorable close-packed bundle.
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I. INTRODUCTION

Beyond their remarkable electronic properties,! carbon
nanotubes® have excellent mechanical properties t0o.> For
many practical applications, like fibers,*> yarns,® self-
supporting sheets,’ etc., carbon nanotubes have to be as-
sembled in macroscopic objects in order to exploit the very
advantageous strength to density ratio of carbon nanotubes
(100 times higher than for steel),® or their capacity to carry
high electric current densities® of the order of 10° A/cm?.
Insofar several approaches to this problem have been taken:
solubilizing the carbon nanotubes using surfactants followed
by the removal of the surfactant and coagulation of the sus-
pension into fibers,* direct drawing of fibers or sheets from
vertically aligned carbon nanotube forests,” etc. Ultimately,
all these techniques end up with carbon nanotubes held to-
gether by van der Waals forces in a similar way like bulk
graphite or carbon nanotube bundles produced during
growth. Therefore bundle formation is not only interesting
from the point of view of understanding the growth of single
wall carbon nanotubes (SWCNTs), but for practical applica-
tions, too.

Bundle formation during growth and the possible role
which the van der Waals interaction may play during the
process is important for understanding the way in which
SWCNTs are formed. Bundle formation during growth may
equally be a desired or a highly undesired process: if fibers
are to be manufactured, bundles are helpful. On the other
hand, if a good dispersion of individual nanotubes—for com-
posite applications—is to be achieved, bundles are highly
undesirable. The difficulty to achieve good dispersion is a
direct proof of the strength and importance of the van der
Waals interaction of carbon nanotubes.

Recent studies by electron diffraction showed that in
bundles of SWCNTs grown by chemical vapor deposition
methods (CCVD), the nanotubes tend to have the same
chirality and similar diameter.! The comparison of the
bundles grown by CCVD, laser ablation, and by the arc
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method showed that while in the first two, indeed the bundles
are smaller in diameter and tend to have the same chirality
and similar diameters, in the case of arc growth the situation
is different.!' One of the possible reasons for this may be
associated with the preferential nucleation and growth of ho-
mochiral bundles in those processes in which less turbulence
is involved in the region where the nanotubes grow. In an
earlier work!? we investigated the effects that may arise from
the van der Waals interaction of SWCNTs of similar diam-
eter. In this work the atomic details of the structure were
disregarded. We found that the magnitude of the van der
Waals interaction of structureless tubes is too small for hav-
ing a significant influence on the preferential nucleation.'? In
the present work we investigate in detail effects that may
arise from the interactions of SWCNTs of similar diameter
taking into account the atomic structure. We use a tight-
binding formalism for intramolecular (intratube) interaction
and an all pair model for intermolecular one electron hop-
ping. The quantum-mechanical part of the calculation is aug-
mented by an intertube Lennard-Jones potential. Interaction
of several families of tubes of diameters close to the (10,10)
tube are computed. Both homochiral (left-handed-left-
handed) and heterochiral (left-handed-right-handed) arrange-
ments are considered for tube pairs.

II. THEORETICAL DESCRIPTION OF INTERACTING
CNTS

Tight-binding description of extended conjugated systems
like fullerenes or carbon nanotubes (CNTs) has been fre-
quently and successively applied to compute several proper-
ties of such systems. Augmented with a Lennard-Jones-type
expression to account for intercluster interactions, the tight-
binding model has been useful to characterize weakly inter-
acting CNTs forming bundles'*!# or multiwall tubes.'>!¢ In
the present work the tight-binding philosophy is generalized
to apply both to intra- and intermolecular interactions, lead-

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.73.195404

SZABADOS, BIRO, AND SURJAN

ing to the intermolecular Hiickel (IMH) model introduced in
Ref. 17. Intersystem hopping, applied also in other
models, 320 offers the possibility to put more emphasis on
orientational effects in intersystem interaction than it is pos-
sible by a mere scalar pair potential. On the other extreme, a
Hiickel model has the advantage over ab initio treatment in
being (i) much simpler and easier to solve and (ii) applicable
to relatively large molecular clusters.
A quick account of the theory is as follows. Intrasystem
hopping
neighbors on A
H*= X

u<v

Bulaya,+a,a,) (1)

is taken to characterize an isolated CNT called A, while the
interaction between CNTs A and B is accounted for by the
intersystem hopping term

A B

AB
Hhopping = 2 E tp,v(a;av + a:aM) (2)
mov

and by a sum of 6-12 pair potentials

A Ag
Elégmard—Jones E E ( - ) (3)

B rw rlw

with r,, referring to the distance between sites u and v. The
scalar Lennard-Jones term does not enter the quantum-
mechanical part of the calculation. The total Hamiltonian
corresponding to an interacting pair of CNTs AB is

AB _ jA B AB AB
H»=H"+H" + Hhopping + E ennard-Jones (4)

with straightforward generalization to more than two inter-
acting partners.

Parameters 8,,,, t,,,, Ag, and A, are set according to the
following scheme. Intrasystem hopping parameter (,,, scales
down exponentially with increasing site-site distance

ﬁ/},v == B(Je_gr‘w (5)

with 8,=243.504 86 eV and {=0.307 451 8 A~!. These val-
ues are determined to give 1.5-eV gap and 1.36/1.45 A bond
length alternation for poliacetylene.?! The first singlet transi-
tion of benzene by these parameter values is 5.1 eV as com-
pared to the experimental 4.7—5.2 eV.?>?3 This parametriza-
tion was successfully used in several studies on conjugated
systems.** Intersystem hopping parameter 7,, is propor-
tional to the overlap integral of p, orbitals perpendicular to

the molecular sheet,3’ centered on sites m and v,

t/.w == tOSMV (6)

with #,=18.095 66 eV. The exponential decay of the overlap
integral S, is characterized by the Slater exponent of the
carbon atom 2.895 A~!. Parameters of the Lennard-Jones
potential are A6—43.676 642 eV A°, and A,

=88 817.6245 eV A'2
The three parameters 7, Ag, and A, that affect the de-
scription of the interaction of molecules are fitted on inter-
acting conjugated systems so as to reproduce the following:
(i) The difference in the interaction energies of two
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naphthalene molecules computed ab initio by second-order
perturbation theory in the Mgller-Plesset partitioning in the
6-31G" basis set. A 0.1-eV interaction energy difference re-
sults between the two arrangements where naphthalene mol-
ecules imitate either AB or AA stacking of graphite.

(ii) Energy minimum at 3.43-A intersheet distance for
two interacting graphitic segments in AB stacking.

(iii) Energy minimum at 3.6-A intersheet distance of
two interacting graphitic segments in AA stacking.
At step (i) the value of 7, was determined, utilizing purely the
hopping terms of the IMH Hamiltonian. Steps (ii) and (iii)
together set the van der Waals parameters Ag and A,, at a 1,
value already fixed from step (i). This parametrization results
a 0.4-meV per atom barrier to inner tube rotation for a five
unit cell (5,5)@(10,10) double wall carbon nanotube
(DWCNT) segment, which compares well with the 0.8-meV
per atom barrier obtained by Kwon and Tomének."

Since diagonalization of the IMH Hamiltonian Eq. (4)—
that would mean the exact solution of the model—is too
demanding for the systems studied here, a perturbation
theory (PT) based strategy is applied. Isolated system Hamil-
tonians H*+H? are considered as zero order, and the effect
of the interaction term Hﬁfppmg is calculated up to second
order in PT. Computation of the perturbation correction due
to intersystem hopping interactions is speeded up tremen-
dously by writing energy denominators as Laplace
transforms®® in the PT formulas, leading to a linear-scaling
[O(N)] formulation. By factorizing the energy denominators,
Laplace transform leads to effective intermediers thereby
opening a way to a fast scan of potential hypersurfaces of
interacting molecules. It is to be noted that fast computation
of the interaction energy is possible only if the geometries of
the interacting partners are kept rigid.

Compared to the exact solution of the model, second-
order PT gives potential energy barriers with an acceptable,
5% error, according to test calculations performed on short
segments of interacting nonmetallic CNTs, i.e., CNTs with
nonzero gap.

III. RESULTS

To understand the apparent preference for same diameter
and helicity in, e.g., CCVD bundles is a challenging task for
theory. By studying the energetics of pairs and small bundles
in this study an initial step is taken in this line. A similar
study on the energetics of relative motion of DWCNT walls
obtained by density-functional theory has been recently
reported.”’” Dynamics and statistical properties as tempera-
ture are not considered presently. The reported interaction
energies correspond to defect free CNTs.

In most of the cases studied, computation for a common
unit cell of incommensurate CNTs forming pairs or bundles
was not possible. Therefore, in addition to bulk tube-tube
interaction, end effects are also reflected in the computed
results. To obtain similar effect of the tube ending in finite-
size calculations, a common tube length is fixed in calcula-
tions that are to be compared.

In Sec. IIT A pairs of (10,10) and (11,9), (15,4), (12,8),
(17,1) tubes are examined, the latter four being close to
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(10,10) in diameter. (Diameters are 13.46, 13.49, 13.49,
13.55, and 13.62 A, respectively.) Tube endings were left
open in all calculations, merely dangling bonds (i.e., sites
having just one neighbor) were removed at the ends to avoid
the appearance of zero energy states in the spectrum of iso-
lated tubes. To allow comparison with experimental observa-
tions, pairs of (10,10) and (13,7) tubes found in CCVD
bundles and (14,5), (12,6), (10,9) tubes found in laser ab-
lation produced bundles'' are also computed, within the
same circumstances as detailed above.

In one example infinitely long tubes are modeled, in order
to remove end effects. This is performed by imposing peri-
odic boundary conditions on the Hamiltonian matrix of a
single unit cell, which corresponds to a single point band-
structure calculation at k=0.

In Sec. III B seven membered bundles of finite tubes are
constructed so that six aligned tubes form a regular hexagon
and a seventh tube occupies the middle. The geometry of this
arrangement is specified by seven rotation angles and a dis-
tance parameter. Rotational angles in these bundles corre-
spond to a local minimum on the potential hypersurface in
all cases.

In spite of the fact that barriers to relative motion of in-
teracting CNTs with incommensurate walls do not grow
monotonically with increasing tube length,?® we report inter-
action energies and barriers divided by either tube length or
interacting surface area in order to obtain comparable fig-
ures.

A. Pairs of CNTs
1. Rotational potential surfaces

Rotational potential surface of aligned pairs of similar di-
ameter CNTs were explored, rotating each tube around its
own axis. The CNTs considered are all chiral, apart from the
(10,10) tube. For each pair of chiral tubes two different com-
plexes were examined: a homochiral pair (i.e., two left-
handed or two right-handed tubes, abbreviated as rr) and a
heterochiral pair (i.e., a left- and a right-handed tube, abbre-
viated as rl).3®

Typical examples for interaction energies as a function of
the two rotation angles a and B are shown in Fig. 1 for
identical tubes and in Fig. 2 for nonidentical tubes. The
homo- and heterochiral situations are plotted on a common
scale in Fig. 2. In the case of an identical pair the energetics
is markedly different for the homo- and heterochiral com-
plex. The corrugation of the surface (i.e., maximum variation
of the energy as the tubes are rotated all around) in Fig. 1 is
five times larger than the same quantity for the homochiral
complex: 26.5 meV/A compared to 5.2 meV/A. The homo-
chiral potential surface [shown in Fig. 4(a)] would therefore
look flat on a common scale with the heterochiral complex in
Fig. 1.

The regular, stripy pattern of Fig. 1 indicates that a het-
erochiral identical pair is the easiest to rotate if turning both
tubes with the same angle in opposite direction (cog-wheel
rotation or disrotation). To understand this phenomenon unit
cells are unwrapped as visualized in Fig. 3, a vertical win-
dow indicating the original facing area. Upon disrotation the
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FIG. 1. (Color online) Rotational potential surface of two
aligned (11,9) tubes, rI pair. Length of tubes is 73.4 A, there are
1202 atoms per tube, wall to wall distance is 3.17 A. Dimension of
figures is eV/A.

window is shifted either to the left or to the right. Such a
displacement has practically no effect in Fig. 3(a), that shows
the heterochiral situation, with a favorable AB-like stacking
of the unit cells. This arrangement gives rise to large inter-
action stripes (valleys) in Fig. 1, while at small interaction
stripes (ridges) the two unit cells in Fig. 3(a) are shifted with
respect to each other to recover an AA kind of stacking. In
the homochiral case depicted in Fig. 3(b), the two unit cells
are mirror images of each other, a repeating pattern therefore
cannot be formed within the unit cell. This leads to a more
leveled surface in the homochiral case than for the hetero-
chiral complex.

For the (10,10)[[(10,10) pair Kwon et al.'* reported a
stripy surface similar to Fig. 1, obtained by a tight-binding
model with an additional pairwise interatomic energy term.
According to their calculation, small interaction stripes are
broken up for peaks isolated by minima as deep as the other
deep regions of the surface. This qualitative disagreement
with the present calculation stems from the orientational ef-
fects included by the intersystem hopping term Eq. (2). Our
control calculations show that these effects are entirely miss-
ing if describing intertube interaction solely by a Lennard-
Jones potential Eq. (3), producing a rotational potential sur-
face that agrees well the calculation of Kwon et al.

A pair of nonidentical tubes (Fig. 2) shows less regularity
than the potential surface of identical aligned pairs. There are
deep and high regions superimposed on a stripy pattern less
expressed than in Fig. 1. Local minima at around a=50°
+k90° and local maxima at around 8=90° in Fig. 2(a) result
from the nonperpendicular cut of the tube at its ending. Cer-
tainly, the end effect is also present for identical heterochiral
pairs, but there it is overwhelmed by the energy scale broad-
ening due to the formation of regular patterns.

Comparison of the finite molecular treatment with a cal-
culation imposing periodic boundary conditions presented in
Fig. 4 makes it possible to pick out the effect of tube ending.
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FIG. 2. (Color online) Rotational potential surface of a pair of
aligned (12,8) and (11,9) tubes, (a) rl pair, (b) rr pair. Length of
tubes is 73.4 A, there are 1208 and 1102 atoms, respectively, wall
to wall distance is 3.13 A. Dimension of figures is eV/A.

For endless tubes [Fig. 4(b)] local minima [at around «
=80° and B=270° in Fig. 4(a)] disappear, revealing a stripy
pattern similar to Fig. 1. An important difference between
Fig. 4(b) and Fig. 1 is that stripes have a positive slope for
the homochiral pair. Hence infinite homochiral pairs are easy
to rotate if turning both tubes with the same angle in the
same direction (anti-cog-wheel rotation or conrotation). This
rotation corresponds to fixing the vertical window in Fig.
3(b) and shifting one sheet to the left and the other to the
right, by the same amount. It is also notable, that the corru-
gation is approximately six times larger for the heterochiral
identical pair (Fig. 1) than for the homochiral complex [Fig.
4(b)].

The significant differences found between the calculations
taking into account tube ends [Fig. 4(a)]—“short tubes” and
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FIG. 3. (Color online) Unit cells of two (4,3) tubes, set so that
wrapping up in opposite directions results a heterochiral pair (a) or
homochiral pair (b). Vertical window indicates the facing of the
aligned tubes produced upon wrapping the sheets.

calculations with periodic boundary conditions [Fig. 4(b)]—
“infinitely long tubes”—indicate that during the early phases
of nucleation and growth the defects associated with tube
ends may have a marked influence in making a certain ar-
rangement more preferable energetically than others.

Summing up, the energetically favored rotation for
aligned pairs of identical heterochiral tubes is cog-wheel ro-
tation or disrotation. For pairs of identical homochiral tubes,
it is anti-cog-wheel rotation or conrotation that has the small-
est barrier. There is a very low, 0.4-meV/ A, barrier to over-
come if not conrotating the CNTs. For heterochiral pairs the
barrier against disrotation is significantly larger, around
26.5 meV/A. For the approximately 7-nm-long tubes con-
sidered presently even a few atoms excess or defect at the
tube ending can destroy the energetic favor of conrotation of
homochiral pairs. This effect of the tube ending certainly
diminishes as the tube length increases. A similar phenom-
enon has been obtained by the calculations of Belikov et al.”
on double wall CNTs, showing extremely small barriers to
the relative rotation and sliding for certain tube pairs with
commensurate walls.

The number of minima and maxima upon rotating one
tube of an identical heterochiral (n,m) pair is n+m. Accord-
ingly there are 20 minima and maxima along a horizontal or
vertical line in Fig. 1. A homochiral pair of identical infinite
(n,m) tubes shows (n+m)/2 minima upon rotating one of
the tubes, as observable from Fig. 4(b). For achiral (n,n) and
(n,0) identical pairs the number of minima is 2n and n,
respectively.

Figure 5 illustrates the 2n rule showing the potential curve
of the (10,10)||(10,10) pair, spanning two minima and two
maxima. The two minima in Fig. 5 reminds to AB stacking
observed in graphite. Of the two maxima the higher one is
obtained at an AA like stacking. Apart from the minimum
around 45°, AB like stacking is again apparent at minimal
energy points on the rotational potential curve of the hetero-
chiral (12,8)]](12,8) pair shown in Fig. 6. A tendency to
form AB like stacking has been used to interpret the stick-
slip movement in experiments carried out with carbon nano-
tubes made to roll and slide on highly ordered pyrolytic
graphite (HOPG) by AFM tips*’ and the preferential orien-
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FIG. 4. (Color online) Rotational potential surface of two
aligned (11,9) tubes, homochiral situation. Plot (a) shows a finite
molecule treatment, plot (b) presents a calculation with periodic
boundary conditions. There are 1202 (a) or 1204 (b) atoms per tube,
wall to wall distance is 3.17 A. Dimension of figures is eV/A.

tation along three axes when depositing short carbon nano-
tubes onto HOPG from suspensions,31 in accordance with the
above calculations.

2. Pair interaction energies

In Table I interaction energies are collected for the pairs
together with optimal wall to wall distances at the minimum
and maximum energy orientation of the two tubes. Numbers
in the table do not show a conspicuous preference for a cer-
tain CNT pair, minimal interaction energy of different pairs
fall into the same range. However, small differences between
minimal interaction energies of pairs can still be correlated
with the experimental observation of homogeneous
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FIG. 5. (Color online) Interaction potential curve of two aligned
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shown of the other tube. The zigzag line of the moving tube and one
zigzag line of the fixed tube is highlighted in the insets.

bundles.!! Heterochiral identical pairs reported in Table I (in-
dicated by superscript a) have the largest interaction energy.
In addition, there are four nonidentical pairs (indicated by
superscript b) which have the second largest interaction en-
ergies, in the range of —0.27 eV/A. For two of these pairs
[(11,9)|](15,4), rl and (15,4)||(12,8), rl] the difference of
the chiral angles (15.2° and 12°) coincides with differences
found experimentally in the case of SWCNT bundles grown
by laser ablation.!" The chirality difference of 21° for
(12,8)]](17,1), rl, and 4° for (12,8)||(17,1), rr, does not
show such a coincidence with experimental data, but one has
to take into account that the number of studies in which the
chirality distribution of SWCNT bundles has been analyzed
in detail is extremely limited.
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FIG. 6. (Color online) Interaction potential curve of two aligned
(12,8) tubes with one tube fixed and the other rotating about its
axis. Heterochiral situation. Geometry at extremal points is shown
in the inserted pictures. The fixed tube is halved in the inserts and
only one zigzag line is shown of the other tube. The zigzag line of
the moving tube and one zigzag line of the fixed tube is highlighted
in the insets.
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TABLE 1. Interaction energies per length and optimal wall to
wall distances for aligned CNT pairs. Both quantities are tabulated
at the minimum and maximum energy orientation (E,,;,, E x> mins
dyay)- Corrugation of the surface is E,,,—E,,;,- Tube lengths are
73.4 A. Number of atoms per tube is 1220 for (10,10), 1202 for
(11,9), 1196 for (15,4), 1208 for (12,8), 1204 for (17,1).
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TABLE II. Interaction energies per length and optimal wall to
wall distances for aligned CNT pairs. See Table I for abbreviations.
Tube lengths are 73.4 A, number of atoms per tube is 1220 for
(10,10), 1216 for (13,7), 1178 for (14,5), 1092 for (12,6), and
1142 for (10,9).

E

E

E

d

Evin  Ewax  Enac—Epin dyin doax
Tubes eV/A eV/A meV/A A A

(10,10)](13,7) -0.2701 -0.2644 5.7 3.15 3.17
(13,7)/(13,7), i -0.2792 -0.2499 29.3 3.11 3.23
(13,7)/(13,7), rr  -0.2677 -0.2621 5.6 3.15 3.17
(14,5)[|(14,5), i -0.2752 -0.2464 28.8 3.11 3.23
(14,5)[|(14,5), rr  =0.2630 —0.2570 6.0 3.15 3.17
(12,6)/(10,9), i -0.2569 —0.2535 3.4 3.15 3.16
(12,6)]|(10,9), rr —0.2568 -0.2535 3.3 3.15 3.16
(12,6)]|(12,6), rI  —0.2681 —0.2426 25.5 3.10 3.22
(12,6)]|(12,6), rr  —0.2569 -0.2536 3.3 3.15 3.16
(10,9)]/(10,9), rI  —0.2710 -0.2452 25.7 3.11 3.22
(10,9)]/(10,9), rr —0.2612 -0.2570 4.2 3.15 3.16

Typical change in wall to wall distance when rotating a

Tubes eV/A eV/A meV/A A A
(10,10)]](10,10)*  —0.2817 —0.2546 27.1 3.11 3.23
(10,10)]|(11,9) -0.2690 -0.2644 4.6 3.15 3.16
(10,10)]|(15,4) -0.2671 -0.2632 3.9 3.15 3.17
(10,10)]|(12,8) -0.2698 -0.2660 3.8 3.14 3.16
(10,10)]|(17,1) -0.2692 -0.2621 7.1 3.16 3.17
(11,9)](11,9), ri*  -0.2770 —0.2501 26.9 3.11 3.22
(11,9)](11,9), rr  —0.2669 —0.2615 5.4 3.15 3.16
(11,9)]](15,4), r® -0.2699 -0.2619 8.0 3.14 3.16
(11,9)](15,4), rr  —0.2684 —0.2616 6.8 3.14 3.16
(11,9)]](12,8), I —0.2681 —0.2635 4.6 3.15 3.16
(11,9)]](12,8), rr  —0.2674 —0.2632 42 3.15 3.16
(11,9)/(17,1), I —0.2664 —0.2603 6.1 3.16 3.16
(11,9)]|(17,1), rr  —0.2665 -0.2602 6.3 3.16 3.16
(15,4)||(15,4), ri*  —0.2767 -0.2490 27.7 3.11 3.22
(15,4)||(15,4), rr  -0.2642 -0.2597 4.5 3.15 3.17
(15,4)]](12,8), rl® —0.2718 —0.2636 8.2 3.14 3.16

> ,8), rr 0. —0. . . 17
(15,4)||(12,8) 0.2695 —0.2630 6.5 3.15 3.1

) 7,1), r -0. -0. . . .
(15,4)|(17,1), rl 0.2668 —0.2606 6.2 3.16 3.16

s 7,1), rr —=0.2657 -0. . . 17
(15,4)||(17,1) 0.265 0.2596 6.1 3.16 3.1

s ,8), 1 -0.27 -0. . 1 .
(12,8)]|(12,8), ri2 0.2791 -0.2531 26.0 3.11 3.22

s ,8), rr - —0. -0. . . .
(12,8)]|(12,8) 0.2682 —0.2642 4.0 3.15 3.16
12, 17,1), r -0.27 -0. 7 .1 .1
(12,8)]( ), ri® 0.2706 —0.2639 6 3.15 3.16
12, 17,1), rr® =027 -0.2641 . .1 .1
(12,8)]( ), rr® —0.2703 -0.264 6.2 3.15 3.16
17,1)||(17,1), r -0.2810 -0.247 . A1 3.
( ) |( ), rl® 0.2810 —0.2478 332 3 3.22
17,1)||(17,1), rr  —=0.2667 -0.2591 7. 3.16 3.17
(17,D]|(17,1) 66 5 6 6

dentical heterochiral (or achiral) CNT pairs.
"Nonidentical pairs with relatively large E,,;,.

Based on the largest corrugation of the rotational surface,
heterochiral identical pairs are the most stable in the sense
that they need the largest energy input to change the tube
orientation (apart from disrotation). The largest corrugation
of 27.2 meV/A for the (10,10)||(10,10) pair is directly
comparable with the 16.6-meV/A maximum corrugation of
the same surface computed by Kwon and Tomdnek.'*
Though there is a rough 2/3 factor between the two theoret-
ical figures, it is confirming that the order of magnitude
agrees. Better agreement is hard to expect regarding the dif-
ferences in the models and their solution in the two studies.

Data computed for the experimentally observed tubes pre-
sented in Table II also reflect preference for heterochiral
identical pairs. Interestingly the (12,6)|[(12,6) pair has rela-
tively small interaction energy. Of the three nonidentical
complexes in Table II only the (10,10)||(13,7) pair shows
interaction energy as large as obtained for heterochiral iden-
tical pairs.

pair from an energetically preferred situation to a highly un-
preferred one is around 0.01—0.02 A. This falls into the
same range as the calculated 0.03-A radial deformation of
tubes that arises due to tube-tube interaction.’?> The change in
wall to wall distance for heterochiral identical pairs is an
exception from the above rule, being an order of magnitude
larger, around 0.1 A.

B. Close-packed bundles of CNTs

As seen in Sec. III A, there is a small energetic favor in
pairing identical achiral or identical heterochiral CNTs. Upon
associating these tubes into bundles the energetic preference
can get enlarged at an extent determined by the compatibility
of the tube and the triangular lattice observed in bundles.!!

1. Achiral tubes

Among all CNTs those that have a Cg axis preserve sym-
metry elements of the triangular lattice. It is easy to point out
that achiral tubes with a Cg axis are not distinguished ener-
getically, as they cannot fit in the lattice the best possible
way. If one takes a seven-membered bundle of such tubes—
accumulating 12 neighboring pair interactions—one may ar-
range at maximum nine pairs to reside at the most advanta-
geous orientation, the remaining three necessarily occurring
at the most disadvantageous facing in this case. This situa-
tion is illustrated in Fig. 7(a). On the other hand, achiral
tubes with a C5 axis may be arranged in the triangular lattice
in such a way that all neighboring interactions are optimal, as
shown in Fig. 7(b). The situation in Fig. 7(b) is achievable if
minima on the pair rotational surface occur at (., Bmin)
with B,,;, being halfway in between two «,,;,’s, i.e., B
=a,,;,+60°. In general achiral tubes possessing a Cj, axis
with n even behave as illustrated in Fig. 7(a), while n being
odd leads to an energetically optimal fitting into the lattice if

195404-6



INTERTUBE INTERACTIONS IN CARBON NANOTUBE ...

i b a ) ( ib al i
. / N4 N4 \ A
b aa ba b~ a
—a a_.a b —.a b__a b
7 \\\ 7 N, Ve ~ Va ~\ // N
ja al )a b, ) ! b d\\ b al )
; ‘| \ \ /
R A S
bob  da hoa b
Iy b a( ‘) (' \;b al )
~ NS NS N

FIG. 7. Facings at neighboring sites in seven-membered bundles
of achiral CNTs possessing a Cj, axis. “a” labels the tube face
found at a,,;,, “b” corresponds to the face at B,,;, With (@,,in» Bmin)
being the position of the minimum on the pair rotational potential
surface. Situation (a) corresponds to n being even, (b) shows the
case of n being odd.

Bin=Apin+360°/(6n). This certainly holds not only for
seven-membered bundles but for the entire triangular lattice.
Interaction energies and optimal wall to wall distances of
seven-membered bundles of achiral tubes collected in Table
IIT serve as an example of the above. The three columns of
the table belong to three different categories: the Cy axis of
tube (9,9) is an odd multiple of 3, the C;, axis of tube
(12,12) is an even multiple of 3 while the C}, axis of tube
(10,10) is not divisible by 3. Optimal wall to wall distances
in Table III show that (9,9) tubes may remain as close in
bundle as they are in pairs. This is true neither for (12,12)
nor for (10, 10) tubes: they get away from each other by 0.01
or 0.02 A, respectively, when a bundle is formed, indicating
that the best facing cannot be formed for each neighbor.

The optimal 3.12-A intertube separation for the (10,10)
bundle is reasonably close to the theoretical value of 3.07 A
reported for the same system by Kwon et al.3> Both numbers
are somewhat smaller than 3.4 A, observed by Thess et al P
and He et al.>* The deviation is acceptable regarding that the
experiment was performed at room temperature while calcu-
lations refer to zero K.

Interaction energies in Table III show an effect similar to
intertube distance. For (9,9) tubes interaction energy of the
seven-membered bundle is lower than the sum of 12 most
favorable pair interactions by —0.008 eV/A, due to the weak
interaction of non-neighboring tubes. The deviation is oppo-
site for (10,10) and (12,12) tubes, bundles having higher

TABLE III. Optimal wall to wall distances in A and interaction
energies in eV/A for pairs and bundles of (n,n) tubes, n=9, 10, 12.
Rotation angles of the tubes are such that the interaction energy is at
a local minimum on the hypersurface. Number of atoms constitut-
ing the tubes are 288 for n=9, 320 for n=10, and 384 for n=12.
Tube lengths are 18.3 A, corresponding to eight unit cells.

9,9 (10,100 (12,12)
Wall to wall CNT pair 3.09 3.10 3.12
distance 7 membered bundle  3.09 3.12 3.13
Interaction CNT pair -0.259 -0.270 -0.293
energy 12 CNT pairs -3.104 -3.244 -3.513
7 membered bundle -3.112 -3.201 -3.500
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FIG. 8. Triangular lattice set with chiral tubes with a maximum
possible opposite handedness facing. “I” indicates a left-handed
tube, “r” stands for a right-handed tube, and “a” can be any of the
two. A dashed triangle encloses the unit cell of the lattice.

interaction energies than the sum of 12 pairs. The positive
deviation is smaller for n=12 than for n=10 (0.013 eV/A
compared to 0.043 eV/A) since most favorable neighboring
interactions are more abundant in the (12, 12) bundle. Inter-
action energy divided by the area of the interacting surface is
~40.9 meV/A? for n=9 while it is —37.8 meV/A? for n
=10 and —34.5 meV/A? for n=12, again showing a small
energetic favor of the (9,9) bundle. Interacting surface area
is measured by the full area of the superficies of the middle
tube plus six times one sixth of the superficies area of an
outer tube, altogether two times the superficies area of a tube.

The differences in interaction energies in Table III shows
that certain bundles may be more stable than others. As this
difference in stability increases with the length of the bundle,
micron long bundles may have appreciable differences in
their resistance to dispersion by ultrasonication or other pro-
cedures. This may have important implications in obtaining
well dispersed SWCNT material which is a must for high
quality composites based on carbon nanotubes.

2. Chiral tubes

Studying the bundle formation of chiral tubes one faces a
situation complicated by the fact that opposite handedness
pair interaction is favorable over same handedness. A honey-
comb lattice of CNTs would be possible to fill exclusively
with alternating heterochiral neighbors. This is, however, not
possible for the triangular lattice. The maximum number of
opposite handedness neighbors in the triangular lattice is ob-
tained if setting a honeycomb lattice with alternating hetero-
chiral neighbors, and putting additional CNTs in each middle
of a hexagon. The handedness of these latter does not matter
as they experience three r/-type and three rr-type pair inter-
actions either way. A piece of such a lattice is shown in Fig.
8. It is interesting to note that in a lattice depicted in Fig. 8 it
is possible to exercise such a rotation that every opposite
handedness neighbors are disrotated and every same handed-
ness neighbors are conrotated. As seen in Sec. III A these
pair rotations have an extremely small barrier, such a rotation
therefore is expected to require small energy input.

Due to the preference of opposite handedness neighbors,
CNTs possessing a Cy, axis, with n being either even or odd,
may fit into the lattice shown in Fig. 8 in an energetically
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TABLE IV. Interaction energies per interacting surface area (E)
in meV/A? and optimal wall to wall distances of outer tubes (d) in
A of seven-membered close-packed bundles. Area of the interacting
surface is measured by the averaged area of the superficies of the
middle tube and an outer tube, to account for interactions of the
middle tube. To this, interacting surface area of outer tubes among
themselves is added, which is taken as six times one sixth of the
superficies area of an outer tube, i.e., full superficies area of an
outer tube. Right-handed middle CNT is denoted (n;,m;), alternat-
ing handedness outer CNTs are (n,,m,). Length of tubes is fixed at
69 A, rotational angles correspond to a minimum on the rotational
hypersurface.

(n5,my) (ny,my)
(12,6) (14,4) (10,9)
(12,6) E -41.06 -39.28 -39.07
d 3.11 3.26 3.28
(14,4) E -39.34 -39.63 -39.27
d 3.05 3.12 3.15
(10,9) E -39.25 -39.48 -39.72
d 3.04 3.11 3.13

optimal way. Among chiral (n,m) tubes that do not have a
rotational axis one can distinguish those for which n+m is
divisible by 3. Supposing equidistant occurrence of minima
on the rotational curve of the identical heterochiral pair, n
+m divisible by 3 generates better fitting into the lattice of
Fig. 8 than n+m not divisible by 3. (The divisibility require-
ment of n+m by 3 is not related to the rule developed by
Mintmire et al.>® for metallic tubes.) Energetically worst fit-
ting in the lattice would occur if there was a maximum on
the pair rotational potential curve at some «,,;,, (with B fixed
at an arbitrary value), but a maximum at a,,;,,+ 120°. This,
however, cannot happen, since there is either a minimum at
a,in+120° (if n+m is divisible by 3), or a,,;,,+120° lies 1/3
way between two minima (if n+m is not divisible by 3).
As an illustration, interaction energies normalized to unit
interacting surface area are collected in Table IV for seven
membered bundles. The outer six tubes are alternating het-
erochiral identical tubes, the type of CNT in the middle var-
ies. Of the three tubes examined, (12,6) has a rotational axis
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of order divisible by 3 (Cy), for (14,4) n+m=18 is divisible
by 3 and for (10,9) n+m=19 is not an integer multiple of 3.
Interaction energies collected in the table are the largest in
absolute value for the three homogeneous bundles. Bundles
set with (14,4) or (10,9) CNTs have an interaction energy
close to each other, while the (12,6) bundle has a definitely
larger interaction energy, roughly —1 meV/A? off from the
other two. Interestingly, even (10,9) tubes, that provide ex-
ample for the least well fitting tubes, form a six-membered
bundle more stable than six best orientation tube pairs. This
indicates that being 1/3 way off from the minimum on the
pair rotational curve does not lead to a significant loss in
interaction energy.

IV. CONCLUSION

It has been shown that there are rather small differences in
interaction energies of aligned pairs of CNTs—suggesting a
weak but significant energetic tube-tube preference in
bundles. From pair rotational potential surfaces an energeti-
cally favorable rotation of identical tube pairs is apparent:
conrotation for homochiral pairs and disrotation for achiral
and heterochiral pairs. Intertube distance varies on the
1072-A scale when changing tube orientation in aligned
pairs. This variation gets enlarged to 10~' A in identical
achiral or heterochiral pairs. Homogeneous bundles formed
by achiral tubes have the largest interaction energy if the
constituting tubes possess a C3, axis with n an odd integer. A
triangular lattice of chiral CNTs is suggested in which right-
and left-handed tubes are distributed so that the maximum
possible energetically preferred neigboring pair interactions
can occur. In such a lattice (i) it is possible to change tube
orientation so that each neighboring homochiral pairs conro-
tate and heterochiral pairs disrotate; (ii) those CNTs are pre-
ferred energetically, which possess a Cs,, axis, n either even
or odd, though this preference is again rather weak.
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