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Chapters 
Wave Packet Dynamical Calculations 
for Carbon Nanostructures 
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Leonid A. Chernozatonskii, Andrey Chaves, Khamdam Yu. Rakhimov, and 
Philippe Lambin 

Abstract Wave packet dynamics is an efficient method of computational quantum 
mechanics. Understanding the dynamics of electron in nano tructures is important 
in both interpreting measurements on the nano-scale and for designing nanoelec­
tronics devices. The time dependent dynamics is available through the solution of 
the time dependent Schrodinger- or Dirac equation. The energy dependent dynamics 
can be calculated by the application of the time-energy Fourier transform. We 
performed such calculation for various sp2 carbon nano ystems, e.g. graphene 
grain boundaries and nanotube networks. We identified the global- and local 
structural properties of the system which influence the tran port properties, such 
as the structures, sizes, and relative angles of the translation periodic parts, and 
the microstructure of the interface between them. Utilizing modified dispersion 
relations makes it pos ible to extend the method to graphene like materials as well. 
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5.1 Introduction 

Erwin Schrodinger introduced the concept of wave packets (WP ) in 1926 to 
bridge th gap between cla ical and quantum mechanic . The wave packet 
dynamical (WPD) method [1, 2) i a scattering experiment inside the computer: 
an incoming WP is "shot" into the localized potential representing the physical 
y tern and the time development of the WP i calculated by solving the time 

dependent chrodinger (or Dirac) equation. Such carbon nano tructures a nanotub 
junction , graphene grain boundarie , and scattering center (electron-hole puddles) 
in graphene are generally too complex for conventional theoretical method (e.g. 
DFf) - only mall idealized model are tractable. WPD, however, is capable of 
calculating for realistic model containing several hundred atom . Becau e of it 
dynamical nature, it is al o po ible to calculate electronic transport. Thi i indeed 
important in modeling the Scanning Tunneling Micro copy (STM) imaging and 
Scanning Tunneling Spectro copy (STS) of carbon nano tructure , becau e the 
topography and the electronic tructure information both influence the STM and 
STS re ults. 

We performed WPD calculation for four different approximations with increa -
ing accuracy: (i) jellium background model with Schrodinger equation; (ii) jellium 
model with Dirac equation; (iii) atomic p eudopotential model with Schrodinger 
equation; and (iv) multidomain method with Schrodinger equation, we will present 
all the e models with characteristic application in thi paper. 

5.2 Jellium Model Calculations with Schrodinger Equation 

In thi model the tunneling of an electron from the tip of the STM to the ample is 
regarded a a problem in potential scattering theory [3). The time development of 
the v, (7, t) wave function i computed from the time dependent 3D Schrodinger 
equation u ing the plit operator Fourier-tran form method [4) 

where the potential energy propagator i a imple multiplication with 
exp (-iV (7 ) tit) for local potential , and the effect of the kinetic energy 

propagator exp ( - iK/2tit) i given in k pace by multiplicating the momentum -pac wave function by exp( - ii k l2tit/4). The input parameters of the WPD 

method are the potential V (7 ) of the sy tern and the v, (7, to) initial wave packet. 

From the calculated 1/f (t , t) wave function (output) we are able to obtain all 
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measurable quantitie , uch as the probability density p (t , t) , the probability 
--+ 

current j (t, t) , etc. One of the advantages of the split operator method is the 
norm conservation of the WP, which is necessary to calculate accurate transport 
values during the irnulation time. 

As we mentioned the tunneling phenomenon is determined by both the geometry 
and the electronic tructure of the ystem. In order to understand the influence of 
these factors in the ca e of the STM - graphene system, first we focused on pure 
geometrical effects within the jellium potential model. Formerly we performed a 
detailed analysis of quantum effects ari ing purely from the geometry of the system 
which influence the STM imaging proce s of carbon nanotubes (5, 6]. Time depen­
dent scattering of electronic WPs wa calculated on a jellium potential model of 
the STM junction containing different arrangements of carbon nanotube and point 
contacts. The theory allowed u to identify components of pure geometrical origin 
re ponsible for characteristic di tortion of the STM image of carbon nanotubes. 
The e geometrical effects can be well de cribed within the framework of the jellium 
potential model. Recently we tudied imilar geometrical effects (7) in the STM 
imaging mechani m of a graphene heet. The STM tip - graphene sy tern has two 
important ingredients: an atomically sharp STM tip and a one atom thick graphene 
sheet. Figure 5. la shows the vertical (xz) cro ection of the model potential (z 
is the direction perpendicular to the graphene heet). Within the framework of the 
jellium potential de cription of the STM tip - graphene nano ystem the STM tip 
is approached by a rotational hyperboloid of 0.5 nm apex radiu and 15° aperture 
angle. The jellium potential value is zero outside the effective urface of the tip 
and - 9.81 eV in ide. This value was calculated from the HOPG EF = 5 eV Fermi 
energy and W = 4.81 eV work function. In fir t approximation the graphene sheet 
is taken a a jellium heet of finite thicknes , the potential inside the heet i al o et 
to -9.81 eV. 

Figure 5.1 b, c how the time evolution of the probability den ity of the WP. 
Figure5.lbi a naphotfort = l.95fstime,Fig.5.lci fort=3.6lf.Thi two 
particular time in tants were cho n in the moment when the WP already tarted to 
tunnel from the tip apex into the ample (t = 1.95 fs) and when the WP i already 
spreading (t = 3.61 f) on the jellium heet. Majority of the WP is reflected back 
from the boundary of the tip potential into the tip; note the interference pattern 
inside the tip. After tunneling into the heet, the WP cannot propagate further in 
the -z direction of the incoming WP becau e of the large positive potential step at 
the lower boundary of the heet. The WP i thu fir t accumulated in the jellium 
heet below the tip apex and then it begin to pread along the sheet preserving it 

initial cylindrical symmetry. Thi i becau e the initial WP i not able to propagate 
along the z axis; its momentum ha to be changed during the tran ient proce 
from the vertical (z) into the horizontal (xy) direction. A tran ient period of length 
L1t ~ 4 fs can be defined while the probability current till flow between the tip and 
the urface. The jellium potential ha a finite thickne of 0.09 nm and a - 9.81 eV 
depth. The corre ponding ID potential well ha a bound tate at E = - 3.1 eV. 
The tunneling event proceeds in two tep . Fir t the WP tunnels into the bound 
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0.5nm + 22eV 

-44eV 

a 

Fig. 5.1 Jellium model calculation for the STM tip-graphene ystem. (a) Grayscale image of the 
vertical (xz) cross section of the potential. The hyperbolic protrusion on the upper half plane and the 
thin gray horizontal bar repre ent the vertical cross sections of the tip and graphene, respectively. 
The dark gray level i the negative potential inside the STM tip and the jellium heel (-9.81 eY), 
the light gray level is the vacuum potential (zero). The gray cale and the calebar are cho en 
to match the minimum and maximum potential value of the graphene p eudopotential shown 
on Fig. 5.3a (see the text for details). (b) and (c) Selected snap hot from the time evolution of 
the probability den ity of wave packet shown as grayscale coded 20 ection . (b) 1 = 1.95 f (c) 
r = 3.61 f . Black corresponds to zero probability. The horizontal dashed line how the po ition 
of the plane, where the tip-sample current wa mea ured. We u ed a eparate grayscale in the tip 
region and the ample region (above and below the dashed line) becau e the probability den ity in 
the ample is several order of magnitude mal l er than in the tip. The edges of the jellium electrodes 
are hown by thin lines 

state of the jellium sheet. Then this quasi bound tate begin to pread along the 
heet. A selection process seems to operate during the tran ient period in the case 

of the narrow jellium plane, which mean that after the tran ient proce certain 
component of the WP are found to be tunneled back to S1M tip and certain 
component are found to have remained on the jellium heet. 
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5.3 Jellium Model Calculations with Dirac Equation 

After di cu ing the geometrical effects we focu on the pecial electronic structure 
of graphene. Graphene, a ingle layer of graphite, is made out of carbon atoms 
arranged on a honeycomb lattice. This material ha unique electronic properties due 
to the fact that the charge carrier in graphene follow linear di persion relations (8) 
near the Fermi level , as if they were governed by the Dirac equation. The resulting 
massle Dirac-like quasiparticle give rise to peculiar quantum properties such 
as the Zitterbewegung [9]. In thi ection we have inve tigated the non-stationary 
Dirac equation for massless fermion in two dimen ions which applies to low energy 
excitation in graphene (10] 

i a -~ at W (x,y, t) = [VF (up) + V (x, y) I] W (x ,y , t) , 

where CJ i the Pauli vector, I i the 2x2 identity matrix and the wave functions are 

written as pseudo-spinors Ill = (wA w8 }7, where WA (W8) is the probability of 
finding the electron in the ub-lattice A (B) of graphene. We separate the potential 
and kinetic energy term of the time-evolution operator through the split-operator 
technique (11]: 

exp [-~H L\r] = exp [ - 2~ V (x , y) IL\t] exp [-~VFP · er L\t] 

exp [-:ti V (x,y) IL\t] 
We have applied this formali m to the problem of puddles in graphene, which are 
region rich in electrons or rich in holes, as ob erved experimentally [I 2, 13] , due 
to the inevitable di order in the graphene sheet. It i intere ting to understand how 
such a di order affects the reflection of electron through graphene. At this aim, we 
have inve ligated recently (14] the WP propagation in graphene in the presence of 
randomly di tributed circular potential teps. We as ume that uch a set of potential 
might mimic the exi tence of electron and hole puddles in a real graphene sample, 
where the e puddle appear with equal probability for electron and holes (12]. 
Therefore, we a urned cattering center that alternate between po itive (+ Vo) and 
negative (- Vo) potentials, considering that, locally, the electron (holes) density i 
higher in negative (po itive) potential region , but the overall average potential in the 
whole scattering region is zero. Thi potential land cape i illu trated by the color 
map in Fig. 5.2a, b for the two ca e we have investigated in thi work: S1 (S2) 

where 20 cattering centers of radiu R = 5 nm (R = 7 nm) were considered, the 
width of the scattering zone being 40 nm (80 nm). Defining the den ity of scattering 
centers as Ds = Ns re R2/A, where Ns is the number of circular cattering center , 
and A is the area of the cattering region, one obtains Ds = 0.303 for both ca e . 
By comparing S 1 to S2, we intend to analyze the combined effect of width of the 
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Fig. 5.2 (a) and (b) Color map of the random potential landscape for the two ample ca es 
con idered in this ection: S 1 and S2 with 20 dot of radiu R = 5 nm and R = 7 nm, respectively. 
(c) The reflectance of the barrier, computed a the large t limit of backscattering probability, is 
illu trated ver us potential barrier Vo for the two ample ca es S_l and S_2 
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scattering region and the radius of the puddles, since S2 is twice wider than SI but it 
has the same den ity Ds. All the results presented in this section were obtained for 
a wave packet with average energy E = 100 meV and ay = 20 nm. The WP had an 
infinite size in x. 

From the numerical olution of the Dirac-Wey! equation the probability current 
density wa computed from which reflection and transmission probabilities were 
derived. Figure 5.2c shows the saturation value of the reflection probability P1 

a a function of the potential barrier Vo, for the two sample ca e con idered in 
this work. In both ca es, the reflection probabilities monotonically increase with 
increasing potential height until Vo= 100 meV, where the Klein tunneling of non­
normal incident part of the WP is minimal, since this value of Vo i close to the WP 
energy E = 100 rneV [15, 16). Above this value, the reflection probabilities oscillate 
from 0.3 to 0.6. The reflection probability is larger for the stronger perturbation (S2) 

among the two ca es examined here. 

5.4 Local Pseudopotential Calculations with Schrodinger 
Equation 

Dirac equation methods nicely describe the electronic dynamics in graphene near 
the Fermi level, where the dispersion relation is linear. Away from the Fermi level, 
however, the dispersion relation i not any more linear (and not any more isotropic), 
hence we need another method to describe high (and low) energy dynamics of the 
n band correctly. This wa accomplished by utilizing an atomic pseudopotential 
[17) matching the band structure of the graphene heet n: electrons. The n: electron 
approximation is valid as long as the tructure remain flat. Moreover the atomistic 
approach makes us possible to handle local effects, uch as grain boundarie in 
graphene. This local one electron potential ha the following form 

N 3 

V,:rap/rene (7) = LL A;e-a;j ""t-7 l, 
j = I i= l 

where 7 1 denote the atomic po ition and N i the number of atoms. The A;, a; 
coefficients are given in reference [17). Figure 5.3a shows the vertical (xz) cross 
ection of the model potential. 

Details of the time evolution of the WP on the graphene surface (xy cro ection) 
can be seen in Fig. 5.3b, c. As the WP reaches the tip apex from in ide the tip 
bulk, it begins to tunnel onto the central hexagon. Then the WP begin to pread on 
the graphene sheet along the C-C bond , in hexagonal symmetry (cf. Fig. 5.3b). In 
this atomic scale proce s the WP doe not "notice" the infinite hexagonal lattice, 
only follows the pattern of the p eudopotential which ha low value channel 
between the neare t neighbour C-C bond , and positive value at the centre of the 
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Fig. 5.3 Atomic p eudopotential calculation for a qua iparticle tunneling from the STM tip onto 
the graphene heet. The TM tip i above the center of a hexagon. (a) Grayscale image of the 
vertical (xz) cro ection of the local one electron potential. (b) and (c) Selected snap hot 
(1 = 2.71 f and 4.29 f ) from the time evolution of the probability den ity of the wave packet 
on the graphene sheet hown a grayscale coded 2D ection (at the xy plane). Black corre ponds 
to zero probability, white i the maximum probability. Each image i eparately normalized. The 
graphene network i hown by thin orange lines 

hexagons. This stage can be regarded a a "molecular" preading. The direction 
of the preading ha changed at t = 3. I 4 f . The new propagation direction is (cf. 
Fig. 5.3c) matching the zigzag direction of the graphene heet in direct pace which 
i equivalent to the 6 rK direction of the Brillouin-zone - thu the WP begin to 
"feel" the infinite hexagonal lattice, hence this stage can be regarded a a " olid 
tate" spreading in which the preferential direction are determined by the lattice 

symmetry [18). 



5 Wave Packet Dynamical Calculations 97 

Fig. 5.4 Charge tran fer through a graphene grain boundary. (a) Model geometry of the STM tip ­
graphene system for the ca e of the pentagon-heptagon grain boundary. STM tip modeled with a 
rotational hyperboloid of jellium i presented by the -2.7 eV equipotential surface of the potential. 
Red arrows symboljze the incoming and spreading directions of lhe wave packet. Below lhe STM 
tip the red circle denotes the near-field region, where the STM tip has trong influence on the wave 
functions. (b) Probability density on the graphene heet with the 5- 7 grain boundary for E = -y0 

as a colour coded 20 (XY) ection. Different colour caJes were u ed in lhe near- and far region 
(inside and outside of the circle). The GB works a a beam- plitter for lhe electron preading 
ani otropically along the zig-zag directions. (c) Probability den icy on lhe graphene sheet with a 
di ordered grain boundary around the Fermi energy as a color coded 20 (XY) ection. Note the 
trong localization around a four membered carbon ring, denoted by a red arrow 

We ucces fully applied the atomic pseudopotential method for a number of 
carbon nanosystems of practical impo1tance. Figures 5.4 and 5.5 shows two 
example , for a graphene grain boundary and for a hexagonal network of nanotubes 
(a uperlattice). In order to study the dynamics in the energy, we used a time-energy 
(t-+ E) Fourier transform, thus obtaining the energy dependent wave function 
1/J (7, E) from the time dependent wave function 1/1 (7, t) (which is the output 
of the WPD calculation). 

Figure 5.4 shows the wave packet transport through an ordered and through a 
disordered graphene grain boundary. As shown by AFM measurements [19), a real 
graphene sheet breaks into many ingle-crystal regions between the domains and 
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Fig. 5.5 (a) and (b) Wave packet dynamics calculated probability densitie for bi layered graphene 
structures at the Fermi energy. (a) A emiconductor structure - the wave packet does not penetrate 
the lattice. (b) A metallic structure - the wave packet travels through the lattice. (c) and (d) Model 
geometries for the emiconducting (a) (metallic (b)) case, respectively 

the presence of the grain boundarie ub tantially affect the remarkable properties 
of the perfect graphene [20). The tran port properties of the grain boundaries can be 
ignificantly different depending on their detailed geometry as shown on Fig. 5.4. 

Figure 5.4a hows the geometry of the calculation. The imulated STM tip i placed 
above the right hand side grain and the WP i injected into this grain. Figure 5.4b, c 
how the probability den ity of the wave packet for an ordered and for a disordered 

grain boundary, respectively. Figure 5.4b i for E = EF-Yo, where Yo= 2.7 eV is the 
tight-binding first neighbor integral. At thi energy the charge propagation is highly 
ani otropic. Thi o called "trigonal warping" phenomenon i not de cribed by the 
Dirac equation model of graphene. Our detai led inve tigation [21-23) showed 
a reduced tran port for the disordered grain boundarie , primarily attributed to 
electronic localized tate cau ed by C atom with only two covalent bonds. 

Figure 5.5 how re ults of a wave packet dynamical calculation for nanome he 
ba ed on bilayered graphene. Our large cale ab-initio calculation howed [24) that 
fabrication of hexagonal hole in bigraphene lead to connection of the neighboring 
edge of the two graphene layers with formation of a hollow carbon nano tructure 
heel which di play wide range of electronic propertie (from emiconductor to 

metallic), depending on the size of the holes and the di tance between them. 
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Our WPD calculations hown on Fig. 5.5. further supported this result. Indeed, 
no conducting state (only an evanescent state) is seen on the Fermi energy for a 
semiconductor nanomesh while we see a conducting state on the Fermi energy for 
the metallic nanome h. 

5.5 Multidomain Wave Packet Dynamical Calculations 

As we explained earlier, the plit operator method approximates the exact time 
development by three consecutive operations in each time tep: a pure kinetic 
energy propagation for l:!.t/2, a pure potential energy propagation for t!.t, and a 
final pure kinetic energy propagation for l:!.t/2. The kinetic energy propagation is 

~ 

calculated in Fourier pace, i.e. the momentum space wave function 1/1( k , t) is 
~2 

multiplied by the exp ( - i j k I M/4) free space propagator. Indeed, for a potential 
~2 

free (V = 0) propagation, the di persion relation is E ex j k I and the split time 
approximation provides the exact re ult for this ca e. This technique make it ea y 

~ 

to replace the free space parabolic di persion relation by any E = E( k ) function. 
Figure 5.6 shows the time development of the WP for a parabolic (Fig. 5.6a) and a 
Linear (Fig. 5.6b) di persion relation. The WP propagating with parabolic dispersion 
relation shows the u ual spreading phenomenon: the width of the WP is increasing 
and the height of the WP is decreasing simultaneou ly - note the decrea ing den ity 
values for larger times. The WP propagating with linear dispersion relation behave 
differently : no spreading is een. The shape (width and height) remains unchanged 
during the time development, only the location of the WP is changing during the 
propagation. This i similar to the propagation of an electromagnetic wave impul e 
in a di per ionless medium. Figure 5.6c hows a multidomain propagation, the 
di per ion relation is parabolic on the left side and linear on the right side, with 
a gradual interface region between them, to prevent reflection. Note the presence of 
preading on the left side and the absence of spreading on the right side. 

Fig. 5.6 Time development of a one dimen ional wave packet shown as x-t spacetime den ity 
plots. (a) Parabolic di persion relation. (b) Linear dispersion relation. (c) Two domain , left (right) 
domain with parabolic (linear) di per ion. Black corresponds to zero probability 
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5.6 Conclusions 

We have presented a detailed analysis of different techniques of wave packet 
dynamical calculation for carbon nanostructures. Geometrical effects in Scanning 
Tunneling Microscopy, such as image distorsions seen in experimental images can 
be successfully explained [5] by utilizing a jellium potential model in the time 
dependent Schrodinger equation. The peculiar electronic structure of graphene -
linear and isotropic dispersion relation near the Fermi energy - makes it possible 
to utilize the time dependent Dirac equation [14] in WPD. With this model we 
can tudy all electronic structure and transport phenomena involving low energy 
excitation only, as we demon trated for the case of electron- hole puddles in 
graphene. In order to de cribe processes involving higher energy excitations, as 
well a defects, we developed a local one electron pseudopotential [ 17) matching the 
electronic structure of the whole Pi band of graphene. As we demon trated with DFT 
[21] and tight-binding [23] calculations, this potential correctly de cribes all sp2 

carbon tructures, such as in grain boundaries in graphene and bilayered graphene 
superlattice [24]. The construction of a local one-electron pseudopotential needs 
a tediou variational procedure [17], however, and it is even not po ible for any 
material . In order to extend the WPD method to other materials, we can, however, 
utilize that the plit operator Fourier tran form method computes the effect of the 
kinetic energy operator in momentum pace. This makes it possible to change the 

free space parabolic dispersion relation with any E = E (1) function - as we 

demon t:rated for simple one dimen ional examples. This mean that we can extend 
the WPD method to any material, where band structure calculation are available. 
By applying different di per ion relations in different spatial region (domains), we 
can even model physical sy tern containing different materials. Such multidomain 
WPD calculations are underway for complex systems, such as transition metal 
dichalcogenide (TMDC) materials. 

To conclude, wave packet dynamic i capable not only of explaining experi­
mental re ults on carbon nanosy tern , but it can also be useful in de igning carbon 
nanoelectronic devices. 
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