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a b s t r a c t

It is known that the size of the scales covering the surface of the Lepidoptera wings is in correlation with
body size: larger species possess larger scales. However, butterfly individuals representing the various
generations of the same species but differing in body size were not investigated in this respect. Similarly,
the question whether different scale size may influence structural color generation based on nano-
architectures in the scale lumen was never addressed. Populations of lowland (environment of Budapest,
Hungary) and upland (Carpathian Mountains, Romania) Polyommatus dorylas were compared in terms of
voltinism, wing and scale size, and the structural origin of blue coloration. Data analysis showed that the
univoltine upland population exhibits a larger wing and scale size. On the other hand, the nano-
morphology of the blue color-generating scales was identical when compared between univoltine and
bivoltine populations. Coloration was also identical when measured with a spectrophotometer under
ultraviolet and visible light. This high accuracy present in the male structural coloration suggests that it is
controlled genetically. Body size alteration for enhanced thermal fitness has no influence on the fine
structure of the nanoarchitecture present in the scale lumen.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Blue butterflies, the tribe Polyommatini of the Lycaenidae, is
one of the most typical day flying lepidopteran tribes in the
northern hemisphere (Talavera et al., 2013; Vila et al., 2011). They
are important members of habitats characterized by open land-
scapes in the Carpathian Basin (Szab�o, 1956). In the wind-swept
meadows, polyommatine lycaenid females spend most of their
time feeding and basking at ground level. They find their mate(s)
because of the special prezygotic strategy the tribe employs: fe-
males detect species-specific optical signals present on the dorsal
wing surfaces of males. Females prefer brightly colored males
(Imafuku and Kitamura, 2018). The male sexual signaling colors are
species-specific and precisely tuned spectrally (B�alint et al., 2012).
The physical background of this signal is provided by photonic
nanoarchitectures located in the lumen of the scales (Schmidt and
Ltd. This is an open access article u
Paulus, 1970; Tilley and Eliot, 2002; Wilts et al., 2009; Bir�o and
Vigneron, 2010). Due to the role this color generation mechanism
plays in the mating strategy, the physical color of the lycaenids is
subjected to strict selection (Piszter et al., 2016), and exhibits a
stress stability which by far exceeds the stability of the pigment-
based pattern found on the ventral side of the wings (Kert�esz et
al., 2017). Moreover, as our previous experiments revealed, the
sexual signaling color of Polyommatus icarus (Rottemburg, 1775)
exhibits an amazing spectral stability, both in space and in time
(Kert�esz et al., 2019).

An important strategy in the adaptation to the environment is
the regulation of generation numbers. For example, the widely
distributed typical grassland species, P. icarus, may have a single
brood in northern latitudes (Henriksen and Kreutzer, 1982) but
produces up to four broods in regions close to the Mediterranean
Sea (Tshikolovtes, 2011). Therefore, the voltinism of this species is
highly influenced by various local conditions. When the environ-
ment turns less favorable, some of the populations are forced to
reduce their brood number in order to adopt a more economical
way to use the available recourses for breeding. Because of this, the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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size of the imagines in populations with different number of gen-
erations can also differ in body weight and wing surface size, as
previously documented for P. icarus (Nygren et al., 2008).

On the other hand, according to recent investigations in Lepi-
doptera, there is a strong correlation between the wing surface
area, location and the size of the scales (Simonsen and Kristensen,
2003; Dhungel and Otaki, 2014). Here, one has to observe that in
the case of photonic nanoarchitectures, a very close relationship
exists between the geometric size of the wing scale nano-
architectures at the nanometer level and the spectral properties,
which provide the species-specific signals for polyommatine
lycaenids (B�alint et al., 2012). Therefore, it is very useful to inves-
tigate species in which the switching from two generations to a
single generation is associated with an easily measurable change in
body and wing size (B�alint, 1987; Nygren et al., 2008), and the
consequences of the change in wing size, both in terms of the
associated scale size and the eventual spectral modifications.

In this paper, we studied one polyommatine species that is
typically found in calciferous open landscapes in the Western
Palearctic region: Polyommatus dorylas (Denis and Schiffermüller,
1775). In general, this species is bivoltine across most of its range
(Tolman and Levington, 1997; Tshikolovtes, 2011), but there are
records of univoltine populations, some of which have been
discriminated taxonomically (B�alint,1985,1987). It appears that the
univoltine populations of this species produce imagines with
conspicuously larger wing surface areas as compared to bivoltine
populations. We aimed to compare the wing surface and the color-
generating scale sizes of populations with different voltinisms. We
also investigated their spectral properties and, in particular,
attempted to determine whether there is any correlation between
the size of the scales and the number of generations and whether
the spectral properties of the populations with different voltinisms
are common or different.

2. Materials and methods

2.1. Species investigated

P. dorylas is distributed westwards from the Dnieper Plain
throughout Central Europe to the Pyrenees, and southwards to the
Balkans and Anatolia, and the Caucasus region (Tshikolovtes, 2011).
For Central Europe in general, this species is documented as being
bivoltine (Szab�o, 1956; Slamka, 2004). In mountainous areas, to-
wards the edge of its range, populations of this species are uni-
voltine (Geiger, 1987; Lafranchis et al., 2015).

2.2. Populations and specimens examined

We sampled and examined a univoltine population of P. dorylas
(Magna) living in the eastern Carpathians (Transylvania, Romania)
and a bivoltine population of P. dorylas (first generation: Dorylas I
and second generation: Dorylas II) inhabiting the Budapest region
(Pannonia, Hungary) (Fig. 1A). The specimens are deposited in the
Lepidoptera collection of the Hungarian Natural History Museum
(HNHM) (Budapest). Samples are also held in the Nanostructures
Department, Institute of Technical Physics and Material Science,
Centre for Energy Research, Hungarian Academy of Sciences
(Budapest). For more details of the specimens, please refer to
supplementary material, Table S1 (Fig. 2).

2.3. Measurements of wing dimensions

In total, we examined 32 male specimens of Magna, Dorylas I,
and Dorylas II (S ¼ 96). In order to measure wing size, we acquired
digital images in the laboratories of the HNHM, which documented
all specimens on a millimeter-scaled graph paper background.
Images were acquired with a Camedia C 7070 (Olympus, Tokyo,
Japan) digital camera.

Using CorelDRAW X6 (Corel, Ottawa, Ontario, Canada) software,
three measurements of the left forewing were taken: (1) the length
of the forewing costa measured from the wing base (vein erection)
to the apex (vein R2 terminus); (2) the length of the outer margin
measured from the apex (vein R2 terminus) to the tornus (anal vein
terminus) and (3) the length of the anal margin measured from the
wing base (vein erection) to the tornus (anal vein terminus)
(Fig. 1B). Using these three measurements we calculated the area
between the white lines on Fig. 1A.

Then, using optical microscope images of the right forewing
(taken with a 2.5 � objective), we marked an area of 1.96 mm2

between the vein M3 and the Cubitus. We determined the number
of blue cover scales in this area on wings of five randomly selected
male exemplars of Magna, Dorylas I, and Dorylas II.

2.4. Optical microscopy

Optical imaging of the wing scales was carried out using an Axio
Imager A1 microscope (Carl Zeiss AG, Jena, Germany) using re-
flected light. The wing scales usually stand at an angle of approxi-
mately 15� relative to the wing membrane, so for better visibility,
we used focus stacking (Adobe Photoshop, Adobe systems Inc., CA,
USA) to compensate for the narrow depth of field of the high-
resolution microscope objectives.

Single scales were removed using a sharp needle, and placed on
a microscope glass slide. The scales were inspected in reflected
light, and we measured their maximum width and length using
CorelDRAW X6.

2.5. Scanning and transmission electron microscopy (SEM and
TEM)

SEM images were taken using a LEO 1540 XB electron micro-
scope (Carl Zeiss AG, Jena, Germany). Wing pieces were cut and
mounted on a sample holder with double-sided conductive tape;
single scales were also placed on conductive tape. To ensure that
the original structure of the wing scales was preserved, no other
treatment was applied. For TEM, a standard sample preparation
procedure was performed: after fixing and dehydration, a few
millimeters of wing pieces were embedded in Spurr's resin (SPI
Supplies, West Chester, PA, USA) and slices of 70 nmwere cut with
an ultramicrotome. For better contrast, the sections were stained
with uranyl acetate and lead citrate, and then inspected using a
CM20 TEM apparatus (Philips, Eindhoven, Netherlands) operating
at an accelerating voltage of 200 keV.

2.6. Spectroscopic measurements

For optical reflectance spectral investigation, we used amodular
fiber optic spectrophotometer (Avantes Avaspec-HS1024 TEC,
Apeldoorn, Netherlands) and a halogen - deuterium (Avantes
AvaLight-DH-S-BAL) light source. All spectra were recorded against
a white standard reference WS-2 (Avantes). For the measurement
of the reflected specular component, we used a normal incidence
probe, which combined the incoming illuminating fibers and out-
going detecting fibers.

2.7. Modeling and statistical analysis

The photonic nanoarchitectures of wing scales were modeled as
chitin multilayers using the transfer matrix method (Pendry and
MacKinnon, 1992; Yeh, 2005). The thickness of each layer in the



Fig. 1. Imagines of P. dorylas and the results of wing size measurements. (A) The left column shows males while the right column shows females. Upper row ¼ univoltine P. dorylas
(Magna) (Eastern Carpathians); middle row ¼ first generation of bivoltine P. dorylas (Dorylas I) (Pannonian region); lower row ¼ second generation of P. dorylas (Dorylas II)
(Pannonian region). On the left forewing of a Magna male it is indicated in white how measurements were taken. (B) Area statistics for mountainous Magna, lowland Dorylas I, and
Dorylas II. The boxes denote the standard error of the mean, while the bars show the standard deviation of the mean. Maximum and minimum values are shown as triangles. One-
way ANOVA and post hoc Tukey's test evaluation showed significant differences between the three groups (p < 0.05).
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nanostructures was measured in cross-sectional TEM images using
multiple points for both Dorylas and Magna specimens. These
values were then averaged and used as an input in simulations
where the reflectance spectra for normally incident light were
calculated. The statistical analysis was carried out using Origin 2018
(Originlab, Radnor, PA, USA) software. The raw data of the wing size
parameters were evaluated using One-way ANOVA supplemented
with post hoc Tukey's test.

3. Results

3.1. Wing surface areas

According to our measurements, the wing surface area ofMagna
and Dorylas I-II could be readily discriminated using the methods
we applied herein. The Magna forewing surface area was charac-
teristically 0.63e0.93 cm2 with mean area of 0.78 ± 0.013 cm2, the
Dorylas I had a wing surface area of 0.46e0.70 cm2, with mean area
of 0.61 ± 0.011 cm2. The range of the Dorylas II was 0.43e0.65 cm2,
with a mean of 0.55 ± 0.011 cm2 (Fig. 1B). Neither Dorylas I nor
Dorylas II reached awing surface area of 0.7 cm2; their typical range
was 0.42e0.70 cm2. Therefore, in quantitative terms, Magna and
Dorylas I-II wing surface areas differed characteristically: this was
also evident when using the naked eye to examine typical imagines
(see Fig. 1A, in which each cell of the table is similarly sized) and
when were analyzed using One-way ANOVA followed by Tukey's
test which showed significant differences between all three groups
of samples (ntotal: 96, p < 0.05). Consequently, it appears that there
is also a small, but significant difference in wing size between the
two generations, as the first generation (Dorylas I) was 1.11 times



Fig. 2. Optical microscopic images of P. dorylas male forewing surfaces taken in the medial area below the cubital vein, along with individual scales from the same area. A and
D ¼ Magna, B and E ¼ Dorylas I, C and F ¼ Dorylas II.
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larger than Dorylas II, on average, although the ratio of the mean
forewing area between Magna and Dorylas I was 1.3.

3.2. Scale sizes and numbers

According to our observations on wing surface areas, the sepa-
rate wing scale sizes were analyzed (Fig. 2). The dimensions (length
and width) of the color-generating cover scales on Magna were
found to be different from those in the two generations of Dorylas I-
II. The average dimensions of Magna scales were 122 by 70 mm
(n ¼ 24), whilst those of Dorylas I-II were 105 by 59 mm (n ¼ 29).
Using One-way ANOVA we obtained significant difference
(p < 0.001) between the scale size of Magna and Dorylas I-II groups
(Fig. 3B and C). According to ourmanual count, the number of color-
generating scales in the examined area (1.96 mm2) for Magna was
443 ± 22, but was 519 ± 12 for Dorylas I and 532 ± 20 for Dorylas II
(n ¼ 15, p < 0.009). This shows that the same physical area was
covered by a smaller number of larger-sized scales in Magna
specimens (Fig. 3A).

3.3. Nanomorphology and spectral properties

SEM and TEM images demonstrated that the nanomorphology
of the bivoltine Dorylas and the univoltine Magna cannot be
distinguished qualitatively at the micron level (Fig. 4), which is
probably a general phenomenon for the subtribe (B�alint et al., 2007,
2012). Our measurements suggest that the nanoarchitectures
occurring in the lumen of the scales were also identical in quanti-
tative terms. The spectra of Magna, Dorylas I, and Dorylas II males
were identical in terms of the maximal blue reflectance, when
plotted normalized to this peak (Fig. 5). There were no notable
differences observed, and individual variations fell within the
normal range displayed by other closely related species (Piszter
et al., 2016) and showed a typical polyommatine pattern (B�alint
et al., 2007). All specimens produced a conspicuous peak within
the visible blue range with very strong reflectivity at a wavelength
of 440 nm. As already reported for P. icarus, older museum speci-
mens exhibit a certain degree of melanin decomposition, which is
manifested by an increased reflectance (black curve) on the red side
of the spectrum (Kert�esz et al., 2019). It is worth emphasizing that
for freshly captured individuals, the spectral curves of Magna and
Dorylas II overlapped perfectly.

4. Discussion

4.1. Wing surface areas

The most characteristic difference that we could detect between
Magna, Dorylas I, and Dorylas II was the wing surface area. On
average, the ratio of wing area inMagna relative to the wing area of
Dorylas Iwas 1.3 and 1.44 with respect to thewing area of Dorylas II.
The ratio of wing surface areas in Dorylas I to Dorylas II was 1.11.

Larger wing surface area can be beneficial in two aspects: (1) in
males, a larger wing surface size provides a more intense, and
therefore a more visible optical signal, and (2) in females, a larger
wing surface of brown coloration can collect more energy for
imaginal activity, what is supplemented by oviposition (Bir�o et al.,
2003). These remarks are supported by the fact that the flight



Fig. 3. Wing scale number and size results. (A) Number of wing scales counted for Magna, Dorylas I, and Dorylas II on a 1.96 mm2 area. (BeC) Single wing scale length and width
(n ¼ 29). (AeC) The boxes denote the standard error of the mean, while the bars show the standard deviation of the mean. Maximum and minimum values are shown as triangles.
One-way ANOVA and post hoc Tukey's test evaluation showed significant differences between the Magna and the other two groups (p < 0.001).
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season (Fig. 6) of Magna is often interrupted by long rainy and cold
periods; therefore, there is considerably less time available for the
activity of the butterflies in the Eastern Carpathians than in the
Pannonian Lowlands (Fig. 7). The average of daily sunshine hours
between 13 May - 30 September in the years 2006e2018 period is
9.51 ± 0.68 in the Budapest region (Dorylas I-II population), while
8.26 ± 0.73 in eastern Carpathians (Magna population). This lower
average of daily sunshine hours correlates with significantly (~25%)
lower average temperature: in the Eastern Carpathians the aver-
aged value for the periods 13 May - 30 September in the years
2006e2018 of the daily average temperature is 14.01 �C, whilst in
the Budapest region it is 19.46 �C. Consequently, the activity of
males in patrolling the habitat must be more intense; their signal
therefore appears to be more obvious; also, females need to accu-
mulate energy more efficiently during the short sunny hours as
their activity includes not only feeding and mating but also for
searching suitable places for egg-laying.

Female Magna individuals are rarely observed, because they
spendmost of their time in the grass, close to the ground, collecting
heat (B�alint, pers. obs.). In the HNHM collection, there are only six
female specimens, which is not a sufficient number to statistically
prove/disprove whether the females are indeed larger than males.
However, on the basis of the available specimens, we are of the
opinion that Magna females are also larger than those of bivoltine
Dorylas I-II (Fig. 1A).

4.2. Scale size and optical signals

Simonsen and Kristensen (2003) demonstrated that a larger
wing surface area correlated well with longer scales. In order to



Fig. 4. Micrographs of P. dorylas scales. A, B ¼ scanning electron micrographs, C, D ¼ cross-sectional transmission electron micrographs. A and C ¼ Magna, B and D ¼ Dorylas I.
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obtain this result, these previous authors assembled and analyzed a
large amount of data from a variety of species. The intraspecific
variability of scale and wing sizes was not addressed.

As we have shown in the present study, Magna scales exhibit
different attributes compared to those of Dorylas I-II, thus sug-
gesting that the result formulated by Simonsen and Kristensen
(2003) was also valid in an intraspecific context. In spite of an
increase in scale size in Magna, the internal architecture in the
lumen of the scales has not changed. This resulted in identical
spectral characteristics in all of the populations we investigated
(Fig. 5).

Previous studies have shown that optical signals are important
factors in prezygotic isolation activities, at least in day-flying
Lepidoptera (Kemp and Rutowski, 2011; Imafuku and Kitamura,
2018). These signals are generated by species-specific nano-
architectures located in the scale lumen; this feature is critical for
sexual discrimination.
Fig. 5. Mean wing reflectance of univoltine P. dorylas (Magna; n ¼ 10), bivoltine
P. dorylas first generation (Dorylas I; n ¼ 9), and second generation (Dorylas II; n ¼ 8)
male specimens measured with an integrating sphere optical setup. The spectra were
normalized to the maxima of the reflectance peaks in the blue wavelength region. One
can observe that reflectance peaks of the structural blue colors are coincident. The
portion of reflectance originating from melanin pigmentation (>600 nm) in Dorylas I
specimens was higher but there was no difference in the blue structural color.
4.3. Nanomorphology and spectral properties

Accordingly, the difference in male wing size does not influence
the nanoarchitectures that produce the optical signals in the wing
surface. This was clearly evident in our spectral data and further
supported by SEM and TEM images (Fig. 4). Therefore, one of the
most important species-specific characteristics remains un-
changed, despite the alteration of the scale dimensions. Here, it is
worth emphasizing that each scale is the product of a single cell
(Greenstein, 1972) and the photonic nanoarchitectures are pro-
duced during the pupal stage by a complex process of self-assembly
(Ghiradella and Butler, 2009; Iwata et al., 2014; Dinwiddie et al.,
2014), which has yet to be fully elucidated. In our case, as shown
by the length to width ratio of the scales, the scale morphology is
affected to a certain extent, but the characteristic dimensions of the
color-generating nanoarchitectures are strictly conserved.

As our simple optical model (supplementary material, Fig. S1)
has shown, an alteration of the order of 10 nm in the typical
dimension of the scale nanoarchitecture would shift the maximal
reflectance by at least 50 nm; this also leads to a simultaneous
alteration inmorphology at themicron scale. This indicates that the
control mechanisms for scale size and shape and for photonic
nanoarchitecture size are very likely different.

The body size and tissue size of an animal depend on genetic
and environmental factors; however, in the case of Magna and
Dorylas I-II, the same genetic information is expressed under
particular environmental conditions. Due to the mountain climate,
Magna exhibited readily detectable size differences, both macro-
scopically (wing size) and microscopically (scale size), but rigor-
ously preserved the nanoscale dimension of the color-generating
photonic nanoarchitectures.

As a matter of fact, this finding is less surprising if compared to
the differences in the cold-stress resistance of sexual signaling
colors and pigment-based cryptic patterns in P. icarus butterflies.
We found that the sexual signaling colors of the males were only
mildly, and randomly altered when pupae were subjected to a long
duration (up to 60 days) of cooling at 5 �C, while the pigment-based
patterns on the ventral wing surfaces were found to change
dramatically with the duration of cold stress; the magnitude of the
alteration also increased monotonically (Kert�esz et al., 2017). In
further support of this theory, when rearing P. icarus butterflies
under controlled conditions, we previously obtained individuals



Fig. 6. Life history diagrams of P. dorylas compiled on the basis of specimens preserved in the Hungarian Natural History Museum. A ¼ bivoltine Dorylas population from the
Pannonian Lowlands; B ¼ univoltine Magna population from the Eastern Carpathians. In the opening columns, the developmental stages are indicated, months are represented in
the first rows. The lengthened time for larval development of Magna is highly evident.

Fig. 7. Sunshine hours during the summer of 2018. Flight periods of the butterflies are indicated by gray blocks. A ¼ bivoltine Dorylas I-II in Pannonia (in vicinity of Budapest),
B ¼ univoltine Magna in Transylvania (Eastern Carpathians). The far less number of hours with sunshine for Magna is highly evident (data source: weatheronline.co.uk).
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much smaller than those in the wild, resulting in smaller wing
surfaces with smaller scales (to be published).
5. Summary

Our experiments and observations demonstrate that size of
wing surface area and the scales covering the wing membrane are
subject to change in polyommatine lycaenids. This phenomenon
can be attributed for gaining fitness via the control of environ-
mental variables by body size and temperature (Kingsolver and
Huey, 2008). In contrast, the color-generating nanoarchitectures
producing the male species-specific color located in the scale
lumen cannot be altered significantly using variables provided by
the environment. Therefore, it can be concluded that the color used
for sexual signaling in males is rigorously controlled by the genome
of the species and this is crucial for keeping the identity if the or-
ganism lives in a community of many closely related and similarly
colored and patterned taxa (B�alint et al., 2012).
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