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Abstract: Materials consisting of single- or a few atomic layers have extraordinary physical proper-

ties, which are influenced by the structural defects. We present two calculation methods based on 

wave packet (WP) dynamics, where we compute the scattering of quasiparticle WPs on localized 

defects. The methods are tested on a graphene sheet: (1) We describe the perfect crystal lattice and 

the electronic structure by a local atomic pseudopotential, then calculate the Bloch eigenstates and 

build a localized WP from these states. The defect is represented by a local potential, then we com-

pute the scattering by the time development of the WP. (2) We describe the perfect crystal entirely 

by the kinetic energy operator, then we calculate the scattering on the local defect described by the 

potential energy operator. The kinetic energy operator is derived from the dispersion relation, 

which can be obtained from any electronic structure calculation. We also verify the method by cal-

culating Fourier transform images and comparing them with experimental FFT-LDOS images from 

STM measurements. These calculation methods make it possible to study the quasiparticle interfer-

ences, inter- and intra-valley scattering, anisotropic scattering, etc., caused by defect sites for any 

2D material. 

Keywords: wave packet dynamics; quasiparticle interference; graphene; transport properties; de-

fect 

 

1. Introduction 

To design nanoelectronic devices from 2D materials, it is important to precisely un-

derstand the dynamics of electrons in these structures. While Bloch waves propagate 

freely in the perfect crystal, in the presence of defects [1–3] the quasi-particles will be scat-

tered and interfered with themselves, which will influence the transport properties of the 

material [4–6]. The interference of incoming and scattered waves leads to characteristic 

patterns in the local density of states (LDOS) around the defects, called quasiparticle in-

terference (QPI) patterns [7,8] also referred to as Friedel oscillations [9]. 

The investigation of the QPI patterns around defects not only gives information on 

the type of the impurity, but also on more hidden band structure properties of the host 

material. A prime example of graphene, where the chiral property of the Dirac electrons 

has a substantial effect on the scattering processes [10]. In graphene two main types of 

scattering processes are possible: intravalley scattering within one K (K’) valley or inter-

valley scattering between two neighboring K and K’ valleys. Due to the honeycomb struc-

ture of the graphene lattice, a new degree of freedom, the pseudospin, emerges. It was 

proved earlier that the conservation of pseudospin during the scattering process leads to 

suppression of intravalley backscattering resulting in a topological fingerprint in the QPI 

patterns. 
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Experimentally, the real-space modulation of the LDOS is accessible by fast Fourier 

transformation (FFT) of the topography or tunneling conductance maps, measured by 

scanning tunneling microscopy [11]. The great advantage of the STM is that it allows us 

to understand the basic mechanism of quasiparticle scattering at the atomic scale. By using 

this method, the quasiparticle chirality effects were observed in graphene [12–14]. How-

ever, the experimentally observed QPI often has complicated patterns because the elastic 

scattering mixes states that are located on the same quasiparticle contour of constant en-

ergy (CCE). If the material has an intricate Fermi surface, where multiple scattering effects 

can take place, the measured FFT-STS images display more complex characters and theo-

retical investigations are highly necessary to understand the experiments [15,16]. 

Wave packet dynamics (WPD) [17] can simulate electronic dynamics including mul-

tiple scattering processes at the nanoscale and are capable of calculating realistic models 

containing several hundred atoms already on a personal computer. The physical system 

is described by a Hamiltonian and the initial conditions are given by an initial wave func-

tion. Solution of the time-dependent Schrödinger equation then yields the 𝜓(𝑟, 𝑡) time-

dependent wave function and its time-energy Fourier transform gives the 𝜓(𝑟, 𝐸) en-

ergy-dependent wave function, which can be used for the interpretation of the QPI pat-

terns measured by STM. In the one particle approximation, we calculate only a one 

(quasi)particle three-dimensional (3D) wave function instead of the 3N dimensional 

many-body wave function and the details of the many-body interactions are coded into 

the Hamilton operator. This can be achieved by building an appropriate 𝑉(𝑟) one-parti-

cle pseudopotential. During the past decade we were performing WPD calculations [18–

20] for many sp2 carbon nanosystems by using a variationally calculated local carbon one-

electron pseudopotential [21]. This pseudopotential has two major advantages: (i) it brings 

the specific electronic dynamics of the bands (linear dispersion near the K points for elec-

trons near the Fermi energy (EF), trigonal warping for hot electrons, etc.) into the WPD 

calculation and (ii) it allows us to handle localized defects. We were able to exploit this 

feature of the pseudopotential in calculating the transport properties of different 0D and 

1D graphene defects [22,23]. 

The WPD calculation has two input quantities: (i) the Hamiltonian and (ii) the 

𝜓0(𝑟) = 𝜓(𝑟, 𝑡 = 0) initial state. In our former calculations 𝜓0(𝑟) was a simple 3D Gauss-

ian wave packet (WP), but this made it necessary to start the initial WP from a region of 

space, where 𝑉(𝑟) = 0, or at least constant, and the WP had to be injected from this region 

into the nanosystem through a simulated interface layer. This, however, made it difficult 

to create a WP with pre-determined initial spectrum on the nanosystem, because the in-

terface layer can considerably distort the spectrum, which can also affect the scattering 

processes and thus the final state strongly depends on the way the initial state was pre-

pared. For example, when the initial WP is injected on the graphene sheet from a simu-

lated STM tip, a complicated multiple scattering process occurs between the tip and the 

graphene surface, which selects only certain components. The further spreading on the 

graphene surface will be determined by the initial state formed by these specific compo-

nents [18]. Such processes have a profound influence on the STM imaging, resulting in 

anisotropic currents even on the Fermi energy. 

In this paper, to avoid this problem, a tailor-made initial WP on the nanosystem is 

built by constructing the WP as a superposition of quasiparticle Bloch states, which is 

presented in Section 2. These precisely determined WPs are used to study the scattering 

on defect states. In Section 3, we introduce and apply an alternative WPD technique, 

which has the advantage that it completely circumvents the need to calculate a pseudo-

potential. We work out the time evolution of the WP directly from the 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ) disper-

sion relation. Formerly, we applied this method for studying the WPD on pristine gra-

phene and MoS2 single layers [20] and now we extend it for graphene structural defects 

opening the way for the WPD investigations of defect scattering processes in other 2D 

materials. 
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2. Bloch Function Wave Packet Construction, Time Evolution and Scattering  

in Graphene 

For any 𝑉(𝑟) potential which is periodic in space, the solutions of the stationary 

Schrödinger equation have the form of 𝜑(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ) = 𝑢(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ)𝑒𝑖�⃗⃗�𝐵𝑙𝑜𝑐ℎ𝑟 ,where 

𝑢(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ) is a periodic function and �⃗⃗�𝐵𝑙𝑜𝑐ℎ is the Bloch wave vector. These 𝜑(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ) 

functions are called Bloch functions. Bloch functions and the corresponding 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ) en-

ergies can be easily computed numerically for any periodic potential, with the Fourier 

transformed form of the Schrödinger equation. Figure 1 shows some characteristic Bloch 

functions for the graphene surface, computed by using the graphene pseudopotential [21]. 

 

Figure 1. Construction of the graphene Bloch wave functions for different points along the ΓK line 

in the extended Brillouin zone. Left column: 𝑒𝑖�⃗⃗�𝐵𝑙𝑜𝑐ℎ𝑟. Middle column: 𝑢(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ). Right column: 

𝜑(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ). See Section 2 for details. Real parts of the wave functions are shown, green is positive, 

red is negative. The graphene lattice is shown by blue lines. The insets in a, d, g, j show the position 

of �⃗⃗�𝐵𝑙𝑜𝑐ℎ (yellow dot) relative to the Brillouin zone. 
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The symmetry properties of Bloch functions depend both on the symmetry of the 

lattice and the �⃗⃗�𝐵𝑙𝑜𝑐ℎ Bloch wave vector. The effect of �⃗⃗�𝐵𝑙𝑜𝑐ℎ on the Bloch function is two-

fold: (i) the 𝑒𝑖�⃗⃗�𝐵𝑙𝑜𝑐ℎ𝑟 plane wave part introduces a �⃗⃗�𝐵𝑙𝑜𝑐ℎ dependent phase factor and (ii) 

the shape of the 𝑢(𝑟, �⃗⃗�𝐵𝑙𝑜𝑐ℎ) function depends on �⃗⃗�𝐵𝑙𝑜𝑐ℎ. The �⃗⃗�𝐵𝑙𝑜𝑐ℎ dependent phase fac-

tors determine the interference patterns of two or more Bloch functions. Such interference 

patterns are visible in FFT-LDOS images obtained by STM. In the case of the  point (Fig-

ure 1a–c), the symmetry of the wave function is identical to the potential itself, a hexagonal 

symmetry. However, increasing the Bloch wavelength along the vertical direction (Figure 

1d–l) introduces a y dependent modulation into the Bloch function. 

Next, we constructed localized wave packets as a superposition of Bloch states. It is 

possible to build maximally localized Wannier functions [24,25] by a carefully chosen su-

perposition, but those superpositions span in the whole Brillouin zone. If we want to have 

a fairly narrow spectral distribution together with a sufficiently narrow spatial distribu-

tion, we can use a superposition with a simple Gaussian amplitude function 𝑎(�⃗⃗�): 

𝜙(𝑟) = ∫ 𝑒
−

|�⃗⃗�−�⃗⃗�0|
2

4∆𝑘2 𝑒𝑖𝑟0�⃗⃗�  𝜑(𝑟, �⃗⃗�)𝑑3�⃗⃗�, (1) 

where we wrote �⃗⃗� for �⃗⃗�𝐵𝑙𝑜𝑐ℎ in this formula for brevity (see Appendix A), �⃗⃗�0 is the mo-

mentum space vector, 𝑟0 is the direct space initial position of the Gaussian and ∆𝑘 is its 

momentum width. 

Figure 2a shows the constructed WP localized in its 𝑦 coordinate in direct space. Its 

spectrum is concentrated on one of the graphene 𝐾 points and Figure 2g shows the plot 

of the real part of the 𝑎(�⃗⃗�) amplitude function, which is a Gaussian multiplied with a 

plane wave. Figure 2a–c show the time evolution of this Bloch WP for an unperturbed 

graphene lattice calculated by numerically solving the time-dependent Schrödinger equa-

tion with the split-operator FFT method [26–28]. We used the �̂� = �̂�𝑓𝑟𝑒𝑒 + �̂� Hamilton 

operator, where �̂�𝑓𝑟𝑒𝑒 is the free space kinetic energy operator and �̂� = 𝑉(𝑟) is the gra-

phene pseudopotential [21]. This time evolution—i.e., that for the infinite lattice—can also 

be analytically calculated by inserting the 𝑒𝑥𝑝[−𝑖𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ)𝑡] time propagator into the 

kernel of Equation (1), where 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ)  is the graphene dispersion relation. The WP 

moves in the −𝑦 direction, because its spectral distribution is centered at the lowest K 

point of the graphene Brillouin zone. The spectral width of the WP is small, 0.1𝛤𝐾̅̅ ̅̅ , hence 

the dispersion relation is still in the linear regime. There is only a very small spreading in 

the time evolution resulting in that the width and the shape of the WP remain unchanged. 

Figure 2d–f show the time evolution of the same initial Bloch WP on a graphene lat-

tice with a structural defect. The defect was modeled by adding a Gaussian potential to 

the pseudopotential. The Gaussian was centered on an atomic site, its height is 54 eV and 

its HWHM is 0.45 nm. This raises the −44 eV minimum and +21 eV maximum values of 

the pseudopotential to +11 eV and +75 eV, respectively. These parameters were chosen in 

order to demonstrate the anisotropic spreading effects, see below. In the future, we intend 

to calculate defect potentials that model real structural defects. We can see that the WP is 

indeed scattered on the defect and the angular distribution of the scattered WP has a hex-

agonal symmetry (Figure 2h and Video S1). Similar anisotropic property around localized 

defect was also proved by using analytical calculations of the Green’s function [29] high-

lighting the accuracy of our WPD method. It is worth noting that anisotropy was also 

observed in the experiments around a point defect [30] originating from intervalley scat-

tering processes. In order to directly reveal the intervalley scattering process in our WPD 

simulations we performed Fourier transformation on our calculated probability density 

images (Figure 2) and compared the FFT images with our STM measurements. 
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Figure 2. Time evolution of the probability density of a Bloch function wave packet in the graphene 

pseudopotential. (a–c) Without defect. (d–f) With defect. (g) Spectral distribution of the Bloch func-

tion wave packet in the Brillouin zone, only the real part of 𝑎(�⃗⃗�) is shown. The red bar shows the 

reciprocal space width Δ𝑘. (h) Scattering pattern, absolute value of the difference of the WPs shown 

on (c,f). The size of the calculation window is 14.48 nm. (see Video S1 for the time development of 

the Bloch WP) 

Figure 3a is the 2D-FFT power spectrum of the probability density of the initial wave 

packet, 𝐹[|𝜓(𝑥, 𝑦; 𝑡 = 0)|2]. This Fourier image shows a thin vertical line section in the 

origin, repeated six times at the vortices of a hexagon. The line section has Gaussian den-

sity distribution along y. It is the reciprocal space representation of the initial wave packet 

(Figure 2d), which is delocalized in the x direction and localized in the y direction. Figure 

3b is the 2D-FFT power spectrum of the probability density of the scattered wave packet, 

𝐹[|𝜓(𝑥, 𝑦; 𝑡 = 7.2𝑓𝑠)|2]. The 𝑡 = 7.2𝑓𝑠 corresponds to a specific time value, when the WP 

has already scattered on the defect (Figure 2f), therefore, the incoming and scattered 

waves can lead to characteristic interference patterns, which can be compared with the 

FFT images of the STM measurements. In Figure 3b, we can still recognize the spot at the 

origin and its six copies at the vortices of the hexagon, but the spots are not narrow vertical 

lines anymore. They have indeed a finite size in both directions, because the scattering is 

caused by the localized defect: the incoming wave packet has only vertical momentum, 

but the outgoing wave packet has momentum components distributed along the whole 

polar angle. Six other spots (marked by green circles) are also visible on this Fourier image. 

These are the characteristic signatures of the intervalley scattering often seen on experi-

mental FFT-LDOS images. For comparison, Figure 3c shows a typical 2D FFT-LDOS of a 

measured topographic STM image around the defect, where intervalley scattering occurs. 
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The STM image was taken on a HOPG graphite sample, near a monoatomic step. The 

tunnel current was 1 nA and the STM bias was 100 mV. 

 

Figure 3. Simulated and measured FFT-LDOS maps. (a) Two-dimensional Fourier transform (2D 

FFT) of the probability density of the initial wave packet shown on Figure 2d. (b) 2D-FFT of the 

probability density at t = 7.2 fs (Figure 2f). (c) 2D-FFT of a topographic STM image. 

3. Band Structure Governed Wave Packet Dynamics 

In the traditional formulation of the WPD, the environment of the moving electron 

quasiparticle (i.e., the crystal and the averaged effect of the other electrons) is incorporated 

into the potential energy operator, often by the help of a (pseudo)potential, thus the Ham-

iltonian is �̂� = �̂�𝑓𝑟𝑒𝑒 + �̂�, where �̂�𝑓𝑟𝑒𝑒 is the kinetic energy operator for a free electron. In 

this section, we present an alternative formulation, where the effect of the crystal potential 

and the many-body effects are entirely incorporated into the kinetic energy operator, i.e., 

the Hamiltonian is �̂� = �̂� + �̂�𝑓𝑟𝑒𝑒. 

In our alternative formulation all crystal structure and electronic structure effects are 

taken care of in band structure calculations that yield a dispersion relation 𝐸𝑛(�⃗⃗�𝐵𝑙𝑜𝑐ℎ), 

where �⃗⃗�𝐵𝑙𝑜𝑐ℎ is the Bloch wave vector and 𝑛 is the band index. Thus, we replace the ki-

netic energy operator in free space, �̂�𝑓𝑟𝑒𝑒 =
|�⃗⃗�|

2

2
= 𝐸𝑓𝑟𝑒𝑒(�⃗⃗�) in momentum representation, 

where 𝐸𝑓𝑟𝑒𝑒(�⃗⃗�) is the free space dispersion relation, with the kinetic energy operator that 

describes the dispersion of a many-electron system in a given crystalline material. Thus, 

the momentum representation of the kinetic energy operator becomes �̂� = 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ). By 

using this modified kinetic operator �̂� = 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ), a perfect crystal Hamiltonian (with-

out any defect) can be written as �̂� = �̂� + �̂�𝑓𝑟𝑒𝑒, where �̂�𝑓𝑟𝑒𝑒 = 0 by definition. We have 

already presented such calculations for perfect 2D crystals, graphene and MoS2 single 

sheets in Reference [20]. Those calculations successfully reproduced the trigonal warping 

effect and the anisotropic WP spreading characteristic of these 2D materials and showed 

different symmetries of the WP spreading, depending on the band structure and the spec-

tral distribution of the initial WP. As we emphasized in Reference [20], similar calculations 

can be easily performed for any crystalline material, where the dispersion relation is 

known. 

In this section, we combine the two methods to study defects in 2D crystalline mate-

rials. We describe the (infinite, periodic) crystal by the kinetic energy operator (utilizing 

the dispersion relation of the material) and the structural defect by a local potential. Thus, 

our Hamiltonian will become �̂� = �̂�𝑐𝑟𝑦𝑠𝑡𝑎𝑙 + �̂�𝑑𝑒𝑓𝑒𝑐𝑡 , where the �̂�𝑐𝑟𝑦𝑠𝑡𝑎𝑙 = 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ) ki-

netic energy operator describes the electronic structure of the crystal lattice and the 

�̂�𝑑𝑒𝑓𝑒𝑐𝑡 = 𝑉(𝑟) potential energy operator describes the local defect. The main novelty of 

this combined method is the straightforward treatment of the different types of defects in 

several 2D materials. 

Figure 4a–c show the time evolution of a WP for an unperturbed graphene lattice and 

Figure 4d-f show the time evolution in the presence of a local defect calculated by numer-

ically solving the time-dependent Schrödinger equation. The defect was modeled by a 
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Gaussian potential, its height is 2 eV and its HWHM is 0.8 nm. In contrast to the previous 

Section, now we used a localized initial state. The spectral distribution of the initial WP is 

a sum of six Gaussians, placed in the six K and K’ points (Figure 4g) resulting in a spatially 

well-localized initial state. Such an initial state models a situation, where the initial WP is 

injected onto the graphene sheet from a localized source. 

 

Figure 4. Time evolution of the probability density of a wave packet on the graphene surface with- 

and without defect. The band structure of the perfect crystal is incorporated into the kinetic energy 

operator, hence the potential is everywhere zero, except in the defect region. (a–c) Without defect. 

(d–f) With defect. The defect is shown by a blue spot. (g) Spectral distribution of the initial wave 

packet in the Brillouin zone (absolute value) is shown by red circles in the K and K’ points, super-

imposed on the graphene band structure. The radius of the red circles is Δ𝑘/2, the intensity of the 

red color is proportional to the spectral weight at each (�⃗⃗�𝑥, �⃗⃗�𝑦) points. (h) Scattering pattern, abso-

lute value of the difference of the WPs shown on (c,f). The size of the calculation window is 23.04 nm. 

Several important effects can be seen in the time evolution of the probability density 

of the WP. Firstly, in the case of the unperturbed graphene surface, we can see an aniso-

tropic (hexagonal) spreading of the WP. This effect is related to the spatially localized 

initial wave function and is in good agreement with our earlier calculations [18], where 

the initial WP was injected onto the pristine graphene surface from an STM tip. More re-

cently, this effect was studied also with TB-DFT calculations, where a model gold STM tip 

was used [31], as well as with Green’s function formalism in a dual-probe STM setup [32]. 

In each case, long-range oscillation occurs resulting in an increased conductance in the 

armchair directions of the pristine material due to the localized source of the electrons. 

Secondly, an atomic scale modulation is presented on the WP. This is surprising at first 

glance, because this calculation does not directly have the atomic lattice as input. The 

atomic structure is, however, implicitly represented by the graphene dispersion relation. 
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Thirdly, when the WP hits the local potential, the scattered WP has a hexagonal symmetry 

(anisotropic)—as it is best seen on the difference image in Figure 4h, though the local po-

tential is cylindrically symmetric (isotropic). This effect, which can be termed as a “gener-

alized Huygens’ principle”, is caused by the anisotropic nature of the graphene dispersion 

relation. Huygens’ principle states that all points of a wave front may be regarded as new 

sources of wavelets that expand in every direction at a rate that depends on their velocities 

[33]. In the case of an isotropic medium, the wavelets have a spherical shape (circles in 

2D). If the value of these velocities, however, depends on the angle of propagation, then 

the wave front does not remain circular, and we obtain an anisotropic wave propagation 

[34]. 

4. Conclusions 

We presented an extension to the wave packet dynamical method, where the initial 

wave packet is constructed from the numerically calculated quasiparticle Bloch states of 

the pseudopotential that represents the physical system. This method makes it possible to 

fine-tune the spectral distribution of the initial wave packet and thus to investigate the 

details of the scattering processes and the nanoscale transport phenomena for different 

scenarios. The method was applied for a structural defect on a graphene surface, where 

we studied the scattering of the Bloch function wave packet on the local defect. A hexag-

onal scattering pattern was seen associated with intervalley scattering. Then we calculated 

the wave packet time evolution by a second method, where the properties of the infinite 

crystal (its atomic- and electronic structure) are coded into the kinetic energy operator and 

the properties of the local defect are represented by a local potential. We show that the 

hexagonal spreading pattern is already present for the pristine graphene, where the initial 

wave packet is spatially well localized. This initial WP represents a physical system, where 

the electrons are injected locally into the graphene surface as in the case of an STM imag-

ing process. We found an anisotropic (hexagonal) scattering pattern emerging even for an 

isotropic potential, similar to the applied pseudopotential case. The advantage of the 

method is that it does not require the calculation of a pseudopotential. The only input 

necessary to represent the infinite crystal is its 𝐸(�⃗⃗�𝐵𝑙𝑜𝑐ℎ) band structure, available from, 

for example, a simple DFT calculation. 

Our extended wave packet dynamical method clearly demonstrated the possibilities 

to investigate defects in different 2D materials, which serve as a new platform to better 

understand the basic mechanism of quasiparticle scattering processes at the atomic scale. 

We intend to apply this method for TMDC materials [35–37], where the strong spin-orbit 

coupling leads to large spin splitting with opposite spin directions of the K and K’ valleys, 

further modifying the possible scattering processes. Another possible application of our 

method is related to twisted bilayers [38,39], where symmetry-breaking correlation effects 

might take place, which have important consequences on the QPI patterns. In all cases, 

the scattering processes calculated by the wave packet dynamical method and their com-

parison with the measured QPI patterns by using STM will provide useful information to 

the application of 2D materials in nanodevices. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-

3417/11/11/4730/s1, Video S1: time development of a Bloch function wave packet on the graphene 

surface. 
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Appendix A 

In this paper, the kinetic energy operator is defined in momentum space and the po-

tential energy operator is defined in direct space. This is well suited to the calculation 

method, because we solve the time-dependent Schrödinger equation by the split-time FFT 

method, where in each time step ∆𝑡 we change the wave function from the direct to the 

reciprocal space and back by Fourier transforms. We have to emphasize that the term 

“Fourier transform” is used in two distinct meanings in this context. The split-time FFT 

method uses the fast Fourier transform (FFT), which decomposes the wave function into 

plane waves, represented by �⃗⃗� wave vectors. In a crystalline material, described by a pe-

riodic potential, �⃗⃗� is not a good quantum number, but the crystal momentum �⃗⃗�𝐵𝑙𝑜𝑐ℎ is. 

The momentum wave function 𝜑(�⃗⃗�𝐵𝑙𝑜𝑐ℎ) can be computed from the direct space wave 

function 𝜑(𝑟) by applying a generalized Fourier transform, where the basis functions are 

the Bloch waves corresponding to the 𝑉(𝑟) potential. 
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