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We have shown that nanoporosity can be generated on metal surfaces by nanosecond laser-matter
interactions in the semiconfined configuration. The scanning electron microscope analysis has
shown that nanoholes of �25–50 nm in diameter, arranged in one-dimensional �1D� and
two-dimensional �2D� irregular and regular arrays, have been formed. The interpretation is based on
the generation of a dispersive, dissipative system of nonlinear solitary plasma waves �humps� that
leave temperature/pressure fingerprints on the metal surface. It has been shown that the 1D irregular
array of nanoholes can be interpreted as a result of the irregular string of solitary humps obtained
by numerical simulation based on the Benney pd equation with the Gaussian perturbation. The 2D
random array of nanoholes can be interpreted as a result of random solitary humps that can be
obtained by numerical simulation from the Benney equation with the periodic perturbation. The
regular string of nanoholes has been shown to appear as a result of breather modes �bound state of
solitons�, the numerical simulation of which has been based on the Boussinesq equation. The regular
2D array of nanoholes has been interpreted as fingerprints of breather modes, in agreement with the
result of the numerical simulation of Tajiri and Murakami, �J. Math. Phys. 34, 2400 �1993��, based
on the Kadomtsev-Petviashvili equation. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2388122�

I. INTRODUCTION

The generation of nanoholes in the specific type of ar-
rangement that was observed in some domains of the micro-
scale porous surface and briefly mentioned in the previous
paper by Lugomer et al.1 is an intriguing phenomenon. Ob-
served in the special experimental configuration called semi-
confined �SCC�, these morphologic characteristics require an
in-depth study. Besides the fundamental importance for
plasma dynamics, the generation of nanoholes in one-
dimensional �1D� and two-dimensional �2D� arrays is of
great importance for various kinds of technological applica-
tions.

Metal surfaces of micron-scale porosity are produced in
laser ablation performed in the experimental configuration
that we call semiconfined.1,2 In this configuration, a laser
beam illuminates the target through a transparent cover plate
positioned slightly above the target. The ablated plasma has a
very limited space to expand, so that the pressure increases
driving the liquid surface layer into the superheated state.
Consequently, the boiling temperature TB is shifted to higher
TB�, and at the moment when the plasma disk reaches the
detonation threshold, the explosion occurs, generating a cy-
lindrical blast wave.3,4 The abrupt increase of pressure
pushes the superheated liquid layer toward the spinodal �the
point of absolute thermodynamic instability�, and triggers the
explosive phase transition of the spinodal fluid into the gas-

eous phase through a cascade of babblings and bubble explo-
sions. Bubble explosions form a very porous, spongelike tar-
get surface morphology.1 The scanning electron microscopy
�SEM� analysis reveals that the micron-scale convex surface
domains of the spongelike surface comprise 1D and 2D ir-
regular as well as regular arrays of nanoholes, mentioned
briefly in Ref. 1.

This paper presents the results of an in-depth study of
this phenomenon. The crucial fact is that nanoholes are ob-
served only in the semiconfined configuration of light-matter
interaction �LMI� because of the generation of solitary
plasma waves. We assume that the origin of the solitary
waves is the blast wave reflected from the transparent cover
plate, which causes the piston effect on the plasma density
interface.5 Behind the shock wave, the plasma instabilities
start to grow in the form of density oscillations that evolve
into ion acoustic solitary waves.5 However, the irregular
spongelike surface morphology induced by the spinodal ex-
plosion result to the piston effect having different conse-
quences in different target domains. Thus, the origin of regu-
lar and irregular nanoporosities lies in the characteristics of
solitary plasma waves and their interaction with the target
surface.

The detailed SEM analysis of the convex parts of a po-
rous surface reveals holes from �25 to 50 nm �or more� in
diameter, which appears as 1D string, 2D quasiregular ar-
rays, or finally, as regular parallel arrays of holes. We at-
tribute their origin to dispersive hump solitons, as well as to
the so-called “breather modes” of the target plasma. Repre-a�Electronic mail: lugomer@irb.hr
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senting compressive waves, they form nanoholes as finger-
prints of the temperature/pressure effect on various parts �do-
mains� of a target surface. The fingerprints remain frozen
permanently at the end of the laser pulse, because of ultrafast
cooling. Various types of nanohole organization are favor-
ably compared with the results of the numerical simulation
based on the Benney and on the Boussinesq pd equation.

II. EXPERIMENT

The experiments were performed using a single pulse of
a Q-switched Nd:YAG �yttrium aluminium garnet� laser
�Es�10 J / cm2, Ps�2.5�108 W/cm2, �=40 ns, �
=1.06 �m�. A matte molybdenum plate of 1�1�0.1 cm3, a
very hard material with high melting and boiling points, was
used as target. To generate conditions of very high tempera-
ture and pressure, the target was illuminated in the semicon-
fined configuration, through a transparent quartz plate posi-
tioned 300–500 �m above the target surface.

The ablated plasma is effectively trapped between the
target surface and the cover plate. For this reason, the plasma
pressure increases, driving the liquid surface layer into the
superheated state, i.e., into the metastable liquid phase. At
the moment when the plasma disk reaches the detonation
threshold, the explosion occurs, thus generating a disklike
cylindrical blast wave.1–4

The radius of the blast wave for molybdenum targets
was found to range from R �2800 to 3300 �m, depending
on the laser energy. It travels at the supersonic velocity of
�106 cm/s and increases the pressure up to �30 kbars
��30�103 atm�—roughly estimated on the literature
basis.6,7

The formation of the blast wave initiates two simulta-
neous processes: one in the plasma density interface ��H /�L�
and the other in the superheated liquid layer.

Perturbation of the plasma density interface by the pis-
ton effect. The process taking place in the plasma slab is
schematically shown in Figs. 1�a�–1�f�. The blast wave
formed by the plasma explosion has an expanding hemi-
spherical shape �Fig. 1�a�� and reaches the cover plate �Fig.
1�b��. Reflected back toward the metal surface, it strikes the
high-density/low-density ��H /�L� interface and snow plows
the background plasma �Figs. 1�c� and 1�d��.8 Behind the
shock, the plasma density interface is modulated, which
leads to instability characteristic of the piston effect �Fig.
1�e��.5 The scenario presented in Figs. 1�a�–1�f� shows that
the piston perturbation of the interface causes plasma density
oscillations. They represent fluid waves that travel perpen-
dicularly to the density gradient direction, i.e., horizontally
between two plates �Fig. 1�f��.

Perturbation of the plasma interface by bubble explo-
sions. The very high peak pressure generated by the blast
wave causes the superheating of the liquid surface layer and
the formation of a metastable state.11 The superheating is
much higher for the matte targets than for the smooth ones
and may reach the spinodal, the point of absolute thermody-
namic instability.12 The transition from the superheated fluid
into vapor occurs through abrupt bubble nucleation and the
phase explosion �PE�. The PE of spinodal fluid associated

FIG. 1. �Color online� Evolution of solitary plasma waves in the semicon-
fined laser-matter interaction. �a� Formation of a plasma by laser ablation of
the Mo target. The expanding front �1� is the front of a low-density plasma
�L, while front �2� is the high-density plasma layer �H, which is in contact
with the metal surface. �b� The expanding shock front reaches the cover
plate. �c� The shock front is reflected back toward the dense plasma layer.
�d� The shock front collisionally snow plows a dense plasma layer; two
counterstreaming plasmas penetrate each other. �e� Behind the shock, the
plasma density instability is generated in the form of plasma density oscil-
lations at the �H /�L interface. The plasma instability evolves into ion acous-
tic solitary waves. �f� The �sub�surface spinodal explosion of bubbles in the
target additionally perturbs the �H /�L interface. These perturbations cause a
random soliton generation and soliton collisions.

104308-2 Lugomer et al. J. Appl. Phys. 100, 104308 �2006�

Downloaded 06 May 2008 to 148.6.76.162. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



with the explosion of bubbles results in the formation of
microscale caverns and the spongelike metal surface.1 The
explosion of bubbles ejects monatomic vapor and small par-
ticles into the plasma layer and makes it more inhomoge-
neous and turbulent.

Therefore, in the SCC LMI, the plasma density interface
is doubly perturbed, first, from above by the reflected shock
front, and second, from below by random bubble explosions.
The strong disturbance induces a very turbulent mixing and
generates the collision dominated plasma �Te/Ti�1�.

In the highly collisional, dense plasma slab, the electro-
static and ion acoustic responses are highly damped and do
not exist, meaning that the plasma behaves more as a classi-
cal standard fluid. The evolution of instability in such plas-
matic fluid results in the generation of solitary waves and
their dispersion into 1D and 2D irregular or irregular arrays
of solitary pulses.

III. RESULTS AND DISCUSSION

A. Solitary plasma waves and the nanohole pattern
generation

1. Irregular string of nanoholes

The SEM micrograph in Fig. 2�a� shows the irregular
string of nanoholes as a fingerprint of solitary pulses. Vari-
able depth of shallow holes in the string�s� indicates varia-
tion of intensity of solitary pulses while the variation of the
hole distance concentrated about two dominant values, d1

�1.3 �m and d2�1.8 �m, indicates variation of the inter-
pulse distance. These characteristics indicate that solitary
pulses are generated by a system that shows unstable
dissipative-dispersive behavior. Such a system is described
by the Benny equation,17 which can be written in the form
�Kawahara and co-workers�,16–19

ut + uux + �uxx + �uxxx + 	uxxxx = 0, �1�

where �, �, and 	 are positive constants characterizing in-
stability �self-excitation�, dispersion, and dissipation, respec-
tively. In the collision-dominated plasma slab the electrons
are approximately isothermal owing to the large electron
thermal conductivity.13 In such plasma slab various types of
dissipative effects can occur which determine the character-
istics of instability and the emerging solitary waves; various
kinds of effects can be described by the dissipative coeffi-
cients through the medium. Approximations are made mostly
by neglecting some dissipative coefficients or simplifying the
relationships that define the coefficients. Since many param-
eters are involved, it is not easy to determine the interval of
validity for an approximation.14 Since plasma in the semi-
confined configuration is compressed,15 and in contrast to the
above practice, we cannot neglect dissipation.

The analysis of nanoholes generated by solitary waves
on the molybdenum target in the SCC LMI was based on the
above Benney equation which, under periodic boundary con-
ditions, gives a steady pulse generation. Following Kawa-
hara, the substitution of u
exp�ikx+�t� into the linearized
version of �1� gives the linear dispersion relation for �,17

� 
 �k2 − 	k4 + i�k3. �2�

Thus, the small-amplitude sinusoidal waves are linearly un-
stable �growing� for long wavelengths and stable �damping�
for short wavelengths.17 Spatially periodic solutions of Eq.
�1� can be obtained numerically for specific combinations of
the parameters �, �, and 	.16–19

Therefore, the initial perturbation of the plasma slab can
be described by the equations for the viscosity damped clas-
sical fluid; evolution of this perturbation gives rise to solitary
waves.20–22 The presence of strong dispersion causes the soli-
tary waves to disperse into hump solitons. The convex target
domains are in close contact with the plasma layer above the
target and “feel” the effects of the plasma dynamics more
intensively than the other concave ones. They are exposed to
higher electron and ion temperature and to higher electron
and ion density, so that hump solitons make nanohole finger-
prints in these domains. However, the organization of nano-
holes in these domains is different, depending on local con-
ditions, and can be reconstructed from the solution of the
Benney equation.

Numerical simulation method. The Benney equation �1�
has no analytic solution so that numerical simulations are
needed to get insight into the dynamics and the soliton struc-

FIG. 2. Irregular string�s� of nanoholes. �a� SEM micrograph of a domain
showing the irregular string of nanoholes. �b� Solitary peaks obtained by
numerical simulation from the Benney equation for the Gaussian perturba-
tion and for �=0.01, �=2�10−4, and 	=5.066�10−6.
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ture. In order to make a comparative analysis of the soliton
evolution in space time, the 1D Benney equation with the
periodic boundary conditions was solved for three boundary
intervals: �i� �0,2�, �ii� �0,4�, and �iii� �0,16�. The simulation
was based on the numerical discretization solve �NDS� pro-
cedure which uses method of lines �MOD� for discretization
of the spatial part of the equation and gives a coupled system
of ordinary differential equations. Discretization was made
on a very dense grid of 1000 lines in all cases. Such a fine
grid was used in order to avoid coincidence between the size
of the dynamic modes and the grid scale. In all simulation
runs, the mode size �the hump soliton size� was much larger
than the grid scale; the very fine grid scale assures that there
is no numerical instability, so that the regime of validity of
the calculation was not surpassed. In addition, the program
used had a protection against numerical instability caused by
inappropriate scale.

In the case that the mode size coincides with the grid, the
program automatically switches to the finer scale, thus elimi-
nating the grid-dependent phenomena.

Integration on a grid of a coupled system of ordinary
differential equations was performed by the Runge-Kutta
method. To get an insight into the influence of dispersion on
the behavior of dynamic modes, i.e., the soliton behavior in
space time for the collision-dominated plasma, the param-
eters � and 	 were constant, while � was varied over a broad
range of values.

The graphical presentation of the simulated hump soli-
tons does not show all lines of the grid, but only 50, to avoid
complete darkness of the graph.

The numerical simulation of string�s� of nanoholes
shown in Fig. 2�b� was based on Eq. �4� using the Gaussian
perturbation and the spatial mesh points with periodic
boundary conditions at x=−L ,L, with L=4. By using the
above simulation procedure and the initial condition u�x ,0�
=cos �x, a series of solitary peaks �humps� was obtained for
the parameters �=0.01, �=2.00�10−3, and 	=5.066
�10−6. Solutions consisting of distinct solitonlike pulses
with the same amplitude are generally observed in numerical
simulations when the interval of periodicity is sufficiently
long in comparison with the characteristic scale. The interval
is determined by instability and dissipation and governs the
width of the generated pulse. A series of solitary pulses has
variable intensity; thus some of them make a very small
effect �shallow circular hole�, whereas the stronger ones
make a slightly deeper hole, in agreement with the micro-
graph.

In the long-time evolutions, the interpulse distances be-
tween such pulses tend to be identical for strongly dispersive
cases.17. By the decrease of the dispersive effect, these dis-
tances suddenly take distinct fixed values and then exhibit
fluctuations about these values. The temporal evolution of
the solutions for strongly dispersive cases is well approxi-
mated in terms of the superposition of solitonlike pulses,
each of which is a steady pulse solution of the original equa-
tion. The tail structure of the pulse governs the properties of
pulse interactions and thus the spatiotemporal evolutions
of the wave system. Introducing the parameter
�=� / ��	�1/2�, which measures the relative importance of

dissipation, one can estimate the characteristics of the soli-
tary pulses.19 When the tails are monotonic �for large �, the
pulses are mutually repelling and the final stage of the evo-
lution is a periodic arrangement of pulses adjusted to the
period of the boundary conditions of the initial value prob-
lem. When  decreases, the oscillatory structure arises on the
front-side tail of the pulse and then is enhanced. Owing to
the oscillatory structure bound states arise between two
pulses with definite interpulse distances.19 Therefore, the
characteristics of the string of nanoholes shown in Fig. 2�a�
can be favorably interpreted on the basis of solitary humps
that are the solution of the nonlinear, dispersive, and dissipa-
tive system with the Gaussian perturbation.

2. Irregular two-dimensional array of nanoholes

In addition to the irregular strings of holes, the SEM
analysis reveals a 2D irregular pattern of nanoholes, such as
shown in Fig. 3. Variation of the hole density and variation
of the hole distance around some characteristic value of
�85 nm indicate that they are fingerprints of vacillating soli-
tary plasma pulses. Numerical simulations based on the 1D
Benney equation with the periodic perturbation in the �0,16�,
�0,4�, and �0,2� intervals of periodicity reveal the transition
from steepened sinusoidal perturbation into hump solitons,
or the onset of chaos. The parameters � and 	 are constant,
while the dispersion parameter � ranges from 2.00�10−4 to
10.00�10−4.

The evolution of hump solitons in space time as a func-
tion of dispersion, for the interval of periodicity �0,16�, is
shown in Fig. 4. Starting with dispersion �=2.00�10−4 the
soliton amplitude reaches A=2 �Fig. 4�a�� and remain con-
stant when � increases to 2.50�10−4 �Fig. 4�b��. With fur-
ther increase of dispersion to �=3.33�10−4 the amplitude
approaches A=3 �Fig. 4�c�� and remain constant when dis-
persion increases to �=5�10−4 �Fig. 4�d��.

FIG. 3. SEM micrograph of a domain showing the irregular 2D array of
nanoholes.
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More details of the soliton evolution are obtained for the
shorter interval of periodicity, �0,4� �Fig. 5�. The irregular
soliton pattern formed at �=2.00�10−4 �Fig. 5�a�� changes
and tends to an almost regular one for �=3.333�10−4

through the formation of soliton strings of gradually increas-
ing amplitude approaching A=3 �Fig. 5�b��. For �=5.00
�10−4, large-amplitude oscillations appear in the soliton
strings �Fig. 5�c��. Finally, for �=10.00�10−4, the ampli-

tude of solitons becomes almost uniform reaching Amax

=6.5, thus indicating the tendency to saturation �Fig. 5�d��.
The most detailed picture of the soliton evolution is ob-

tained for the interval of periodicity �0,2� shown in Fig. 6.
The irregular pattern obtained for �=2.00�10−4 shows soli-
tons with the oscillatory behavior of the amplitude �Fig.
6�a��. For �=2.85�10−4, the oscillations gradually vanish,
while the amplitude increases to A=3, showing some regu-

FIG. 4. �Color online� Numerically
simulated evolution of the hump soli-
tons from the initial sinusoidal pertur-
bation as a function of the dispersion
parameter � in the boundary interval
x= �0,16�, with �=0.01 and 	=5.066
�10−6: �a� �=2.00�10−4, �b� �
=2.50�10−4, �c� �=3.33�10−4, and
�d� �=5.00�10−4.

FIG. 5. �Color online� Numerically
simulated evolution of the hump soli-
tons from the initial sinusoidal pertur-
bation as a function of the dispersion
parameter � in the boundary interval
x= �0,4�, with �=0.01 and 	=5.066
�10−6. Shorter boundary interval than
in Fig. 4 gives a detailed look at the
soliton characteristics: �a� �=2.00
�10−4, �b� �=3.33�10−4, �c� �
=5.00�10−4, and �d� �=10.00�10−4.
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larlike organization �Fig. 6�b��. The tendency to regular ar-
rangement of the soliton pattern continues with increasing
dispersion and for �=4�10−4 takes the form of short strings
�Fig. 6�b��. The increase of dispersion to �=5.00�10−4 re-
sults in the formation of an almost homogeneous pattern of
spikes �Fig. 6�c��. Beyond this dispersion value �for example,
at �=10.0�10−4�, the pattern shows more homogenization
in the hump soliton distribution, in their width, and in their
amplitude �reaching Amax=6.5�, characteristic of the onset of
saturation �Fig. 6�d��.

Numerical simulations reveal that the hump solitons ap-
pear by decomposition of the initial periodic perturbation, for
�=0.01, �=0, and 	=5.066�10−6. Looking in the direction
of the time axis in Figs. 4–6, one can see the gradual trans-
formation of a periodic wave into irregular oscillations and
finally, into separated humps that represent dispersed soli-
tons. The decomposition of a periodic wave and the appear-
ance of solitons occur after some time, which can be under-
stood as a “delay time” that depends strongly on the
parameters �, �, and 	 and tends to zero for the parameter
choice �=0.01, �=2�10−3, and 	=5.066�10−6. Numerical
simulations reveal that the formation of random hump soli-
tons or the onset of chaos shifts to shorter times as the dis-
persion parameter � increases. Thus, the onset of soliton
formation which for �=2.000�10−4 occurs at t=2.2 shifts to
t=1.2 for �=10.00�10−4 �Table I�. The solitary pulses
formed at one moment do not change at the next moment,
but stay mostly at the same location and are of the same
intensity. However, the vacillating behavior cannot be ex-
cluded. Numerical simulations performed for the intervals of
periodicity �0,16�, �0,4�, and finally, for �0,2� show the soli-
ton evolution for the perturbation function with eight peri-
ods, four periods, and one period, respectively. Simulation
performed with 1000 point discretization in all cases, at

gradually smaller and smaller scale, represents the numerical
microscope which shows more details of the soliton charac-
teristics.

Instead of the � dependence of the soliton evolution, we
consider the  dependence, i.e., the soliton evolution as a
function of a single parameter which takes into account dis-
persion and damping. Table I indicates that the soliton am-
plitude increases with . At the same time the soliton asym-
metry which develops oscillatory structure on the front side
of the pulse tail gradually increases for the higher  values.
Also, regular rows of hump solitons �the short soliton
strings� that appear at =1.4778 start to vanish and trans-
form into an irregular hump soliton pattern at =2.6123,
indicating the onset of the intermittent deterministic-chaotic
regime. The width of the hump solitons decreases with in-
creasing  until they transform into well-separated spikes.
Besides, the soliton amplitude becomes more uniform until
for =4.473 the solitons become almost of the same size.

FIG. 6. �Color online� Numerically
simulated evolution of the hump soli-
tons from the initial sinusoidal pertur-
bation as a function of the dispersion
parameter � in the boundary interval
x= �0,2�, with �=0.01 and 	=5.066
�10−6. Shorter boundary interval than
in Fig. 5 reveals more characteristics
of the hump solitons: �a� �=2.00
�10−4, �b� �=4.00�10−4, �c� �
=5.00�10−4, and �d� �=10.00�10−4.

TABLE I. Dependence of the onset time �t� of the soliton generation from
the periodic perturbation and of the soliton amplitude �A� on the dispersion
��� with constant parameters �=0.01 and 	=5.066�10−6.

� �10−4�  t A

2.000 0.7807 2.2 1
2.500 1.1709 2.0 2
2.850 1.2751 1.9 3
3.333 1.4778 1.55 3
4.000 1.7715 1.50 3
5.000 2.2719 1.40 3.5
6.666 2.6123 1.3 5

10.00 4.4734 1.2 6
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Obviously, the transitions between the almost regular
and chaotic regimes are strongly dependent on , i.e., on the
characteristic ratio of dispersion and �viscous� damping.

The characteristic of the pattern in Fig. 3 is a random 2D
array of nanoholes of diameter of �20–30 nm, which at
large magnification show a cross section different from the
circular one. The holes are of variable depth, ranging from
very shallow to deep ones, and in this respect the pattern of
nanoholes is inhomogeneous. It means that they could not be
formed by the saturated solitons which have the same ampli-
tude but by the random solitary humps of variable amplitude
and of variable shape. The analysis of the micrograph �Fig.
3� gives the total nanohole density Ntotal=87.45�106/cm2,
of which Nshallow holes=51.74�106/cm2 and Ndeep holes

=35.71�106/cm2.
To make a comparison of the pattern of nanoholes and

the pattern of soliton contour plots �equivalent to soliton
cross section� the hump solitons were generated at a large
dispersion �=10.00�10−4 �=4.4734�. The contour plots
were made at three different height intervals, �0.6�, �2,6�, and
�4,6.5�. The soliton contour size and their density distribution
are the largest for the �0.6� height interval; they decrease for
the next, �2,6�, and finally become very small for the �4,6.5�
height interval. It can be seen that the contour plots �“cross
sections”� which are not of a regular circular shape are very
similar to the shapes of the nanoholes in Figs. 7�a� and 8�a�.
Finally, the distribution of the nanoholes in Figs. 7�a� and

8�a� can be favorably compared with the soliton contour den-
sity distribution in Figs. 7�b� and 8�b�, respectively. Thus, a
2D random pattern of nanoholes can be favorably interpreted
on the basis of random solitary humps that are the solution of
the nonlinear dispersive dissipative system with periodic per-
turbation.

3. Regular string of nanoholes

Soliton collision and formation of breather modes. In
close vicinity to the domains that comprise an irregular array
of holes, the domains have been observed that comprise ei-
ther a regular string or a 2D array of holes. In many cases the
holes are incorporated into the groove lines, as clearly seen
in Fig. 9�a�. The role of solitons in the formation of irregular
hole patterns indicates that the regular strings and 2D arrays
of nanoholes originate from the coupled solitons or breather
modes. This special type of dynamic modes appears in the
domains with the dominant soliton collision. Upon the colli-
sion with each other, solitons emerge with their identities
unaltered except for a minor shift in position. Sometimes, all
eigenvalues �self-consistent localized solution� or a subset of
eigenvalues has identical real parts, corresponding to solitons
moving together with the same initial velocity. Since they
experience the same acceleration, they remain together form-
ing bound state called breathers.21–24 A breather containing
many solitons in general has a symmetrical irregular shape

FIG. 7. �a� Comparison of the SEM micrographs of 2D irregular array of
nanoholes and �b� the contour plot of the hump solitons generated for �
=10.00�10−4 made at the height interval �2,6�.

FIG. 8. �a� Comparison of the SEM micrographs of 2D irregular array of
nanoholes and �b� the contour plot of the hump solitons generated for �
=10.00�10−4 made at the height interval �4,6.5�.
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oscillating periodically in time. Under perturbation, the
breather will break up and release all its solitons.24

For the simulation of a 1D regular string of holes shown
in Fig. 9�a� caused by the breather modes, we used the
Boussinesq equation �Tajiri and Murakami�25

utt − puxx − 6�u2�xx − uxxxx = 0, �3�

with p= ±1. We consider solutions of the above equation that
give a 1D solitary lattice of breather modes. As shown by
Tajiri and Watanabe, the substitution

u = u0 exp�i�kx − �t�� �4�

gives the nonlinear evolution of an unstable mode which is
exponential at the initial stage u�u0 exp�	t� cos�kx�, where
	 is the growth rate given by 	=k�k2− p�1/2. It takes the
maximum amplitude at a time and finally decays exponen-
tially to zero u�u0� exp�	t�cos�kx�, which is called a grow-

ing mode. The growing mode solution can be represented in
the Fourier series23

u = �
n=1

2nk2e−nkb�t� cos�nkx� , �5�

where

b�t� = �1/k�ln�K1/2 cosh�	t + ��

+ �K cosh2�	t + �� − 1�1/2� �6�

and

K = �4k2 − p�/�k2 − p�, 	 = k�k2 − p�1/2. �7�

A typical growing mode solution is shown in Fig. 9�b�.
Stationary breather solution. Equation �7� with p=−1

has the stationary breather solution, which can be con-
structed from the imbricate series of rational growing modes.
Such a stationary breather solution can be written as23

u = k2��1 + �1/L�1/2 cosh�kx + ��cos�t + ���/

��cosh�kx + �� + �1/L�1/2 cos�t + ���2� , �8�

where L= �1−k2� / �1−4k2�, =k�1−k2�1/2, while � and � are
arbitrary constants.23

As a nonpropagating mode, a stationary breather mode
appears as a localized soliton whose amplitude increases to
some maximum value and then decreases to minimum, rep-
resenting the process which repeats periodically in time. A
typical stationary breather solution is shown in Fig. 9�c�.

Intermitted wave mode solution. The wave mode solu-
tion is constructed from a double imbricate series of rational
growing modes in the form23

u�x,t� = − a2��m,n�1/�ax + ir�t� − �mah − 2�in��2

+ 1/�ax − ir�t� − �mah − 2�in��2� + c2� , �9�

that is intermittent in time and space. The summation ranges
over all integer pairs m and n, while a and c are some real
constants; r�t� is a function of t to be determined, and h is the
interval in the x direction.23

Figure 9�a� clearly shows �20 parallel rows with an
almost regular periodic distribution of holes. Some of the
holes are slightly extended and connected with the neighbor
holes in the row. These characteristics of the nanohole orga-
nization can be compared with the characteristics of the 1D
row of breather modes obtained by numerical simulation
�Figs. 9�b� and 9�c��. The breather modes obtained from the
Boussinesq equation show the increasing width of the soliton
in either one direction �x� or in two directions �x and y�, as
well as the existence of a soliton tail. The increasing soliton
width causes two neighbor holes to appear almost joined
together, thus forming a groove �with holes� as observed in
Fig. 9�a�. The breather mode formation based on the Bouss-
inesq equation gives a favorable description of the 1D regu-
lar organization of nanoholes and elucidates the situation ob-
served in some domains of the nonuniform spot.

B. Regular two-dimensional array of nanoholes

The SEM analysis reveals that some domains comprise
an almost regular 2D array of nanoholes, which can be inter-

FIG. 9. Regular 1D and 2D arrays of nanoholes. �a� SEM micrograph of a
domain showing the regular strings of nanoholes and the domains of 2D
regular array of nanoholes. �b� Growing mode of the Boussinesq equation
with p=−1 �after Tajiri and Watanabe �Ref. 23�. �c� Stationary breather
solution for k=2/ 	29, �=0, and �=�. As seen, it is constructed as the
imbricate series of rational growing modes in the t direction �after Tajiri and
Watanabe �Ref. 23�.
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preted as a result of the 2D soliton lattice. The two-
dimensional propagation of many kinds of waves in weakly
nonlinear dispersive media can be described by the
Kadomtsev-Petviashvili �KP� equation21,22

�ut + 6uux + uxxx�x + 3puyy = 0. �10�

The KP equation is actually a two-dimensional extension of
the Korteweg-deVries equation with p= +1. It has a solitary
wave solution:21,22

u�x,t� = − �1/2�k2 sech2�1/2�kx + ly − �t�� , �11�

where �=k3+3l2p /k; k and l are the wave vectors in the x
and y directions.21,22 The conventional line soliton is stable
to transverse long disturbances for the negative dispersion
�p= +1� and unstable for the positive one �p=−1�. There-
fore, the dynamics described by the KP equation is qualita-
tively different, according to the type of dispersion.21,22,25 In
the case p=−1, various localized solitons should be formed
since the line soliton is unstable to transverse disturbances.
Such solitons are no longer exponential in character but take
the form of rational functions in space variables.21,22,25

Another kind of 2D localized solitons is the periodic
solution, obtained by superposition of rational soliton solu-
tions.

Thus, the three kinds of solitons, namely, line, rational,
and periodic solitons, have been known so far in the case of
positive dispersion. However, the KP equation has polycnoi-
dal wave solutions regardless of the sign of the dispersion.
The double cnoidal wave is biperiodic in space, which is
regarded as the superposition of two line solitons of different
sizes. As Tajiri and Murakami25 have shown, the KP equation
�14� with positive dispersion gives biperiodic wave solutions
�the lattice soliton solutions�, which are constructed by su-
perposition of periodic solitons or double imbricate series of
rational solitons.25 Summarizing their result, the lattice soli-
ton solution can be obtained by superposition of an infinite
number of rational solitons. Rational solitons are doubly im-
bricated in two �x and y� directions, giving rise to the 2D x-
and y-periodic solution to the KP equation with positive
dispersion.25 Therefore, the lattice soliton solutions �a kind
of 2D Toda lattice� which favorably describe the 2D regular
array of nanoholes can be obtained from double imbricate
series of rational solitons.

IV. CONCLUSION

Laser-matter interactions with matte Mo targets in the
semiconfined configuration generate one-dimensional and
two-dimensional irregular and regular arrays of nanoholes.
Their origin was conjectured from the generation of solitary
waves in the target plasma by the piston effect. In the semi-
confined configuration, the solitary humps as the plasma den-
sity waves interact with the target surface, thus leaving the
thermal/pressure fingerprints in the form of nanoholes.

The collision-dominated plasma with the presence of
nonlinearity, dissipation, and dispersion under strong damp-
ing behaves as a simple fluid, most appropriately described
by the Benney equation, which we used for the numerical
simulation of the hump solitons. The similarity between the

patterns of nanoholes and the pattern of solitons generated by
numerical simulations indicates the great importance of dis-
persive effects in these processes. The fact that various solu-
tions of the same equation are obtained for various types of
initial perturbation indicates great inhomogeneity in the
plasma-target contacts, in the variation of dispersion and dis-
sipation parameters, as well as in the variation of perturba-
tion conditions in the local domains of a basically random
surface.

It has been shown that the irregular one-dimensional ar-
ray �string� of nanoholes emerges from the irregular string of
solitary peaks, which is obtained from the Benney equation
for the initial perturbation of the Gaussian-type and for the
periodic boundary conditions.

It has been shown that the irregular two-dimensional ar-
ray of nanoholes emerges from the random solitary peaks,
which are obtained from the Benney equation for the initial
periodic perturbation and for the periodic boundary condi-
tions. The regular one-dimensional string of nanoholes has
been shown to emerge from the breather modes �modes
formed by the soliton collision� from the Boussinesq equa-
tion. Finally, it has been indicated that the regular two-
dimensional array of nanoholes emerges from the solution of
the 2D Kadomtsev-Petviashvili equation.

The phenomenon of the 1D and 2D patterns of nanohole
generation in the semiconfined LMI could be of great tech-
nological importance. At present, the nanohole patterns are
spontaneously formed and further experimental investigation
with variation of experimental conditions is needed to eluci-
date the underlying process in detail.
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