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Abstract. Scanning tunneling microscopy (STM) is the only tool making
it possible to study both the topography and electronic structure of car-
bon nanosystems in sub-nanometer resolution. The interpretation of the
STM images of carbon nanosystems is more complicated than in the case
of at, single crystalline surfaces. Because of this computer simulation is a
helpful tool in understanding the experimental data. In this paper the im-
age formation in STM and the particularities of imaging supported carbon
nanosystems are discussed. The tight binding and the wave packet dynam-
ical STM simulation methods are reviewed with applications showing their
complementary merits. These methods are simple enough to make feasible
in the near future their application to more complex carbon nanosystems
like coiled nanotubes and nanotube crossings.

1. Introduction

The discovery of the fullerene [1] opened a new era of carbon science: the
science of carbon nanostructures. For the time being a large variety of these
systems [2] are known: fullerenes [1,3], carbon nanotubes [3,4], peapods [5],
nanotube junctions [6], Y-connections [7], aggregations of nanotubes, car-
bon onions, etc. Apart from being very interesting from the theoretical point
of view, carbon nanostructures have a wide range of potential applications
owing to their remarkable mechanical and electrical properties. There are
not many tools available to characterize isolated carbon nanostructures.
Among these techniques only scanning tunneling microscopy (STM) gives
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the possibility to study both the topography and the electronic structure of
these nanosystems in sub-nanometer resolution. However, this very prop-
erty of STM makes it not easy to interpret STM images because the inu-
ence of the topography and the electronic structure has to be separated.
Several other factors, from which the STM tip geometry is the most impor-
tant, also inuence the imaging mechanism. Because of all these features
image simulation is inevitable for a correct interpretation of STM images.

2. Scanning Tunneling Microscopy

In the STM instrument [8] an atomically sharp, conducting tip is brought
within a distance of a few tenths of a nanometer to a conducting surface
(sample) while an Ut bias of the order of 1V is applied between the tip and
the sample. Because of the small separation a quantum mechanical tun-
nel current It of the order of 1nA is owing through the tip-sample gap.
In the most common, so called topographic mode of the STM the tip is
mechanically scanned above the sample (in the X-Y plane) by piezo actu-
ators while a feedback loop controls the height of the tip above the sample
(Z coordinate of the tip) to maintain the tunnel current at a preselected
constant Isetpoint value. The so generated 3D motion of the tip de�nes the
topographic STM image. In practical STM instruments the Z(X;Y ) topo-
graphic image is constructed from the UX , UY , UZ voltages applied to the
piezos.

Figure 1. Concept of the STM. Small circles symbolize the atoms. s is the tip-sample
tunnel gap.

The simplest explanation of STM operation is based on 1D tunneling
theory [9]. When a quantum mechanical particle of energy E is incident on
a potential barrier of height V0 and width s the transmission probability is

T / e�2�s ; (1)
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where

� =

q
2m=�h2(V0 �E) : (2)

This expression is valid in the asymptotic limit of �s >> 1 (i.e. small
transmission).

In an STM instrument, however, one of the electrodes is not a plane,
but a sharp tip (see Fig. 1). Because of the exponential dependence of the
tunneling probability with distance the majority of the tunnel current ows
in a narrow channel between the tip apex and the sample plane. The typical
minimum achievable half width at half maximum HWT of the tunneling
channel is 0:1� 0:2nm with sharp tips [10]. This narrow tunneling channel
is responsible for the atomic resolution of the STM.

2.1. STM ON CARBON NANOSTRUCTURES

Carbon nanostructures are 3D objects with characteristic radii of curva-
ture in the nm range. This value is comparable on the one hand to the
characteristic value of the tip-sample tunnel gap (which is of the order of
0:5nm in typical STM experiments) and on the other hand to the apex
radius of the STM tip. This makes the interpretation of STM images of
carbon nanostructures di�erent from that of at surfaces.
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Figure 2. Geometric line cut. The thick line is the geometric line cut drawn by the apex
of the tip (marked by open circle). The shaded lower half plane, middle ring and upper
hyperbolas show the vertical cross sections of the sample, nanotube, and tip, respectively.
The electrodes are bounded by their jellium e�ective surfaces (broken lines). Several,
typical tip positions are shown, with di�erent shades of grey. For each tip position shown,
the nearest tip and sample points are joined by a thin dashed line.
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The e�ect of the comparable characteristic radii of the sample and the
tip is generally called \tip convolution e�ect". The tip convolution causes a
broadening of the sample features as demonstrated on Fig. 2. for the case of
a nanotube scanned by a hyperbolic tip. Because of its exponential distance
dependence the tunneling current tends to follow the shortest path, which
is normal to the tube, and the corresponding \o�-z" component of the
current increases as the tip moves aside to the tube [11]. These shortest
path segments are shown on Fig. 2. by dashed lines. During the lateral
scanning It is kept constant by the feedback loop. Assuming a uniform
local density of states (LDOS) on the sample and tip surfaces the e�ect
of the feedback loop can be taken into account approximately by keeping
the length of the tunneling path at a constant value. The curve drawn by
the apex point of the tip when using this simple approximation is called a
geometric line cut. As it is demonstrated in Fig. 2., when the tip follows the
curvature of the nanotube, the tunneling point moves away gradually from
the tip apex to its side. However, when the tip apex approaches the support
surface the tunneling is switched back from the side of the tip to the apex.
After this switching the tip follows a line parallel to the support surface. As
demonstrated in Sec. 5.3. this simple geometric model is justi�ed by wave
packet dynamical calculations.
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Figure 3. Relation between the position of the STM tip (y) and that of an imaged atom
(y0) of the nanotube when the tunneling current follows the shortest path between tip
and nanotube (dashed line).

The e�ect of the comparable values of the characteristic radius of the
sample and the tunnel gap is demonstrated in Fig. 3. It causes a stretching



5

of the image of the atomic lattice in the direction parallel to the sam-
ple curvature. To study this e�ect the tip radius was assumed to be zero
throughout the subsequent discussion. Using the geometric approximation
discussed above we assume the tip-sample gap to be a constant � value.
(The e�ect of the atomic lattice causes only a small variation on the order
of 0:1nm to this constant gap.) Hence when the tip scans above a nano ob-
ject with radius of curvature r its apex moves on a circle of radius r+�. As
a consequence the features on surface of the radius r are projected onto the
radius r+� surface and are therefore stretched by a factor of (r+�)=r. In
the special case of a carbon nanotube, the radius of curvature is small only
in the direction perpendicular to the tube axis (say, y direction) but it is
in�nite in the direction parallel to the tube axis (x direction). This causes
an asymmetric stretching in the atomic resolution STM images of small
diameter nanotubes: the atomic lattice is inated in the y direction. As
demonstrated in Sec. 5.3. this stretching is reproduced in tight-binding cal-
culated atomic resolution STM images of carbon nanotubes. It is also seen
in experimental STM images taken on single wall nanotubes [12, 13]. Due
to the asymmetric distortion, the angles between the C-C nearest neighbor
bonds measured on the STM image deviate from �=3.

Apart from the phenomena discussed above, there are other factors spe-
ci�c to the imaging of carbon nanosystems but here we can only give refer-
ences to these phenomena. These factors include the e�ect of the di�erent
electronic structures of the nanosystem and its support [14], the e�ect of lat-
tice imperfections and substituted atoms [15], the second tunneling gap [16]
(between the nanosystem and the support), point contact e�ects [17], the
lateral spreading of the charge along a nanotube while tunneling [18], etc.
All these e�ects make the simulation of the imaging mechanism an impor-
tant tool in interpreting STM images and scanning tunneling spectroscopy
(STS) curves of carbon nanosystems.

3. STM theory

3.1. PERTURBATIC TREATMENT

Treating the tip-sample coupling as a �rst-order perturbation the total tip-
sample current is given as

It =
2�e

�h

Z
+1

�1

dE [ft(E)� fs(E)]
X
�;�

jh�jvj�ij2Æ(E �E�)Æ(E �E�) . (3)

where ft(E) and fs(E) are the occupation numbers of the tip and sam-
ple, respectively and h�jvj�i is the coupling matrix element of an j�i tip
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state to a j�i sample state. This equation is the well-known starting ex-
pression of the perturbatic theories of elastic tunnel processes.

3.2. TERSOFF-HAMANN THEORY

In this simpli�ed model [19] only one atom at the tip apex is taken into
account, with an s-wave orbital. Both the tunneling matrix elements and
the tip density of states (DOS) are taken to be constant in the eUt energy
window. With these assumptions the tunnel current is directly proportional
to the LDOS integrated between the Fermi level of the tip and sample, that
is

It(~r; Ut) /

Z Es

F

Es

F
�eUt

dE �LDOS(~r;E) ; (4)

with
�LDOS(~r;E) =

X
�

j  �(~r) j
2 Æ(E� �E) ; (5)

where  � and E� are the electron wavefunction and eigenvalue of state
�, respectively. We then approximate the constant current images as iso-
surfaces of It(~r; Ut). Using this approximation Rubio et al. simulated [20]
STM images of single wall nanotubes by determining the �LDOS(~r;E) val-
ues from ab-initio calculations.

For an in�nitesimally small bias Eq. 4. becomes even simpler:

It(~r; Ut) / rhoLDOS(~r;E
s
F ) ; (6)

which means that the tunnel current at tip position ~r is simply proportional
to the sample LDOS on the Fermi level at the center of the tip.

3.3. TIGHT-BINDING STM THEORY

To go beyond the simple Terso�-Hamann result one has to make some
justi�cated assumptions for the h�jvj�i tunneling matrix elements and for
the tip DOS. A simplest formalism to accomplish this is the tight-binding

theory. Assuming just one orbital per atom, the tight-binding expression of
the tunnel current takes the following form [21]

It(Ut) = (2�)2
e

h

Z Es

F

Es

F
�eUt

dE
X
i;i02t

X
j;j02s

vijv
�

i0j0n
t
ii0(E

t
F�E

s
F+eUt+E)n

s
jj0(E)

(7)
where the EF 's are the Fermi levels of the tip (t) and sample (s), vij is
a tight-binding coupling between the orbitals located on sites i of the tip
and j of the sample, and nsjj0(E) = (�1=�) Im Gs

jj0(E) with G
s
jj0 a Green's
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function element of the sample. A similar notation, ntII0(E), is de�ned on
the tip side.

For the applications illustrated below, the tip was treated as a single
s-atom (i), like in Terso�-Hamann theory, with a Gaussian DOS. On the
nanotube, there is one � orbital per C atom (j). The tip{sample coupling
terms were Slater-Koster sp hopping interactions decaying exponentially
with the distance dij :

vij = v0 wij e
�dij=� cos �ij (8)

where �ij is the angle between the � orbital on site j and the ij direction,
and wij is a cutting weight factor

wij = e�ad
2

ij=
X
j0

e
�ad2

ij0 (9)

introduced for convergence reasons. The parameters are � = 0.85 �A, a =
0.6 �A�2.

4. Wave packet dynamical simulation of the STM image

For a correct interpretation of some e�ects mentioned in Sec. 2.1. it is nec-
essary to go beyond the �rst-order perturbation theory. This is the case,
e.g. for point contact imaging [17] when, because of the small tip-sample
separation, the conduction mechanism switches from tunneling to ballis-
tic ow. Point contact imaging is accomplished experimentally by applying
relatively large (more than 1nA) tunnel currents with moderate (less than
1V ) biases. This is because to maintain the small Rtunnel = Ut=It value the
feedback loop have to push the tip so close to the sample that the poten-
tial barrier gets punctured. Atomic resolution is still possible [22] in point
contact mode and the switching from tunneling to point contact causes
characteristic changes [17] in STS spectra.

In the wave packet dynamical method the current density is determined
by calculating the scattering of wave packets (WPs) incident on the barrier
potential. The initial WPs are constructed from the stationary states of the
reservoir (tip or support bulk) from which the WPs are arriving. The total
tunnel current at a given STM bias is calculated as a statistical average
of the tunnel currents for WPs of di�erent allowed incident energies and
directions (~k vectors) weighted according to the band structure of the two
reservoirs.

The tunneling probability for a given initial WP is determined from the
time dependent wave function  (~r; t) computed from the time dependent
Schr�odinger equation by the split operator Fourier transform method [14].
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In this method the time evolution operator exp (�iH�t) is approximated
(in Hartree atomic units) by the symmetrical unitary product

exp (�iH�t) = exp (�iK=2�t) exp (�iV�t) exp (�iK=2�t) (10)

where �t is the simulation time step. While the e�ect of the potential energy
propagator exp (�iV�t) is a simple multiplication with exp (�iV (~r)�t) for
local potentials, the kinetic energy propagator exp (�iK=2�t) is applied

in k space by multiplicating the '(~k; t) momentum space wave function

by exp
�
ij~kj

2
=4�t

�
. To utilise this formula it is necessary to calculate the

'(~k; t) momentum space wave function by fast Fourier transform (FFT) of
 (~r; t). Finally we have to return back to real space by inverse FFT.

5. Simulation results

5.1. GRAPHENE SHEET

As a �rst application of the tight-binding formalism STM image of a single
sheet of graphite (graphene sheet) was calculated, see Fig. 4

Figure 4. STM current map at constant height (0.5 nm) above a graphene sheet. The
tip potential is 0.25 V. See the text for details.

We can see corrugation valleys that correspond to the center of the
hexagons of the honeycomb structure (overlaid on the image by black lines).
Around the hexagonal holes, there is a network of protruding C-C bonds.
The hexagonal atomic lattice does not show up in the image, instead a
triangular lattice made of the valleys is seen.
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5.2. BERNAL GRAPHITE

When coupling two or more graphene layers with the Bernal graphite stack-
ing, the two atoms per unit cell become unequivalent: atom A has a neighbor
directly beneath whereas atom B does not. In a small interval around the
Fermi level, the LDOS on site A is much smaller than that on B [23]. As
a result, the STM current at small bias is larger when the tip is above an
atom B, which therefore appears as a protrusion in the constant-current
image. This interpretation is considered as the ad-hoc explanation of the
fact that only every other two atoms are seen in the experimental STM
images of graphite [24].

Figure 5. STM current map at constant height (0.5 nm) above a multilayer graphite
surface. The tip potential is 0.25 V, which corresponds to a current ratio IB=IA = 2.
The B atoms are clearly resolved, whereas the A atoms do not come out. See the text
for details.

As can be seen in Fig. 5. there are no marked local maxima of the
current at the locations of the A atoms, only the B atoms are seen (as white
features). By increasing the bias, the di�erences between the densities of
states on A and B sites become less important and the asymmetry washes
out gradually.
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5.3. SINGLE WALL NANOTUBES

Fig. 6. shows the STM images computed by the tight-binding formalism for
four single-wall nanotubes with diameter around 1.4 nm.

(10,10) (18,0)

(11,9) (12,8)

Figure 6. Gray-scale representation of the axial distance at constant current of the STM
tip apex above the topmost part of four single-wall carbon nanotubes. The tube axis is
parallel to the horizontal direction. The vertical distance of the tip to the atom located
at the center of each image was set to 0.5 nm. For the two metallic, non-chiral (10,10)
and (18,0) nanotubes, the tip potential was 0.3 V. The chiral (11,9) and (12,8) nanotubes
are semiconductors, with a band gap of �0.6 eV. For both of them, the tip potential was
0.5 V. All coordinates in the �gure are in �A.

In agreement with the interpretation of graphene images summarized
above, the centers of the honeycomb hexagons correspond to sharp dips
of corrugation. In these two-dimensional maps of the radial distance of
the tip, the nanotube axis is along the horizontal, x direction. Only the
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topmost parts of the nanotubes have been imaged. The curvature of the
nanotube causes a distortion of the images in the form of an ination of the
y (see Sec. 2.1.) as discussed in [21], here by a factor of 1.7. This distortion
is clearly visible on the honeycomb lattice that was superimposed on the
images. It is also responsible for the elongate shape of the corrugation deeps
at the center of the hexagons.

In the (18,0) zig-zag nanotube illustrated in Fig. 6, the largest pro-
trusions are found on the bonds parallel to the axis. These protruding
bonds form a triangular lattice of oblate humps. This resembles the tri-
angular lattice formed by every other two atoms in multilayered graphite.
In the (10,10) armchair nanotube, the largest protrusions are realized on
the atoms. Here all the bonds look the same and the image has the hon-
eycomb symmetry. In the case of chiral (11,9) and (12,8) nanotubes, one
third of the bonds protrudes more than the others, like with the zig-zag
geometry, but not always the ones closest to the axial direction. This bond
anisotropy again destroys the hexagonal symmetry, as often observed exper-
imentally [25]. In the chiral nanotubes, the protruding bonds form stripes
that spiral around the nanotube [26]. The elongate holes at the center of
the hexagons are no longer aligned with the circumference, as indeed often
observed in the experimental images [27{29].

Fig. 7. shows snapshots of the time dependent WP probability den-
sity for a Gaussian WP incident from the tip bulk onto the tip-nanotube-
support tunnel junction. In this calculation focussing on geometrical e�ects
the tunnel junction is modeled by a simple 2D jellium potential [14]. The
geometrical and material parameters of the carbon nanotube and the tip are
the same as in [14]. The carbon nanotube is modeled by a cylinder of 0:5nm
radius oating above the support at a distance of 0:335nm. The STM tip is
taken as a hyperbolic cylinder of 0:5nm apex radius and 15Æ aperture an-
gle. The e�ective surface of these objects is assumed to be 0:071nm outside
their geometric surface (de�ned as a smooth surface matching the nuclear
skeleton of the surface atoms). An in�nitesimally small bias is used and all
the electrodes are assumed to have the same, free electron metallic DOS.
The STM constant current loop is simulated by �nding for each Xapex lat-
eral tip displacement that Zapex vertical tip displacement which yields a
constant WP tunneling probability.

With the help of this WP dynamical calculation we are in position to
verify the heuristic assumptions made in the derivation of the geometric
line cut in Sec. 2.1. It can be seen in Fig. 7. that the majority of the tun-
nel current is indeed owing in a narrow channel around the line section
connecting the closest points of the tip and the sample, as was sketched
intuitively in Fig. 2. For Xapex = 1:6nm we can observe the switching of
the tunneling point from the side to the apex of the tip.
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Xapex(nm) t = 1.7 fs t = 2.9 fs t = 3.9 fs
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Figure 7. Probability density of the scattered wave packet for selected time instants
and Xapex lateral tip displacements (0:0, 0:8, 1:6, and 2:0 nm). Size of the presentation
window is 3:84 nm. Contour lines are drawn on sqare root scale. Each frame is normalized
to its maximum density. Maximum density values are 4:2, 0:6, and 0:07 nm�2 for 1:7,
2:9, and 3:9 fs, respectively. Density in the tube region becomes appreciable on the lower
right frame because of the renormalization.

The curve drawn by the tip apex point when the simulated tip is scanned
over the nanotube while keeping the tunneling probability at a constant
value is called a quantum line cut [14]. The good matching of the so de-
�ned quantum line cut (drawn by crosses in Fig. 8.) with the geometric
line cut de�ned in Sec. 2.1. justi�es the constant tip-sample separation ap-
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Figure 8. Comparison of geometric and quantum line cut. Thick solid line is the geo-
metric line cut. Crosses show calculated points of the quantum line cut. A thin solid line
connecting the crosses was drawn to guide the eye.

proximation. As seen in Fig. 8., however, the tip-sample separation is larger
above the support plane than over the nanotube. This is because the WP
has to tunnel through two tunnel resistances (tip-nanotube and nanotube-
support) when the tip is above the nanotube but it has to tunnel through
only one tunnel resistance when the tip is above the support plane. This
causes a larger tunnel resistance above the nanotube than above the sup-
port plane which makes the feedback loop to retract the tip somewhat when
the tunneling point is switched from the nanotube to the support plane.
The di�erent electronic structure of the nanotube and the support not in-
cluded in this model causes a further increase of the tunnel gap above the
support [14] as compared to that above the nanotube.

6. Summary and outlook

Scanning tunneling microscopy is an extremely attractive tool for imaging
individual carbon nanostructures and to perform simultaneously spectro-
scopic measurements on the imaged nano-object. Because the imaging of
supported 3D objects di�ers strongly from that of the at, homogeneous
surfaces, cautious image analysis and simulation are necessary to correctly
interpret the experimental images.



14

-2 -1 0 1 2

-2-1
0 1 2

0

1

2

3

4
-2 -1 0 1 2

A. B.

Figure 9. A) Geometric model of STM tip, nanotube and support surface. All dimensions
are in nm. B) Snapshot (at t = 3:5 fs) of the constant probability density surface of a
wave packet tunneling through the tunnel junction shown in (A).

Recent developments in computer power and better algorithms also
make it possible to use more realistic models in the simulations. These en-
hancements extend the sphere of the phenomena which can be interpreted
by these simulations. As an example, in Fig. 9(b). shows a snapshot from
the wave packet development calculated in three dimensions (3D) for the
STM junction model of Fig. 9(a). Note that while the WP tunnels into the
support surface (see the lower protrusion in the �gure) it simultaneously
spreads along the tube. Details are published elsewhere [18].

The tight-binding and wave packet dynamical STM simulation meth-
ods are simple enough to be utilized in the near future for more complex
nanosystems like coiled nanotubes, Y-connections, nanotube crossings, etc.
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