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Abstract. Networks built from carbon nanostructures and in particular from nanotubes promise
exciting nanoelectronic applications. It is thus important to fully understand the quantum
mechanical rules of charge propagation through these nanostructures. Some features of the
electronic properties of the nanosystems are of purely geometrical origin. These can be
investigated in the framework of the jellium model [1]. Wave packet dynamical calculations
showed that, when the current is tunneling in a transversal direction through a carbon nanotube
"sandwiched" between two electrodes, the energy dependence of tunneling probability shows a
plateau in a well defined range. In this work, by solving analytically the stationary Schrödinger
equation of a model system, we demonstrate that this plateau is due to electrons being trapped in
stationary states of the nanotube. Geometrical features, like diameter dependence of the wave
functions and binding energies are studied. Comparison of the results of the widely used zone
folding technique with exact jellium wave functions shows a discrepancy at small diameters and
an excellent agreement for d > 1 nm.

INTRODUCTION

Electron transport through carbon nanosystems is a basic phenomenon for the
understanding of the Scanning Tunneling Microscopy (STM) investigation of these
structures and also provides the principal operational principles for carbon nanotube
based nanoelectronics. Understanding the current flow through a carbon nanotube
during the STM measurements is of great interest in the interpretation of experimental
STM images, which contain always a mixture of geometrical features and the
electronic structure of both the sample and the STM tip. In our former wave packet
dynamical simulations [2] following the time evolution of the electron tunneling
through the full three-dimensional system the tunneling problem was regarded as a
problem in potential scattering theory with a jellium model potential and the time
dependent Schrödinger equation was solved numerically. The study of energy
dependent transmission of a wave packet showed [3] when the tunneling occurs in a
transversal direction through a carbon nanotube "sandwiched" between the STM tip
and the support surface, the energy dependence of the tunneling probability shows a
constant plateau (instead of typical exponential behavior), in a well defined energy
range (Fig.1a.). This means an increased transition probability from tip to support in
that energy range compared to the case when the nanotube is not present between the
electrodes. This is a signature of resonant tunneling, i.e. the existence of quasi-
stationary states in the mentioned energy range.
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FIGURE 1. a) Energy dependent transmission of a wave packet tunneling through a nanotube in an
STM model for tip positive (triangles) and negative (squares) 1 V bias potential (taken from ref.[3] ). b)
The potential model used in analytical calculations, and the stationary solution of the Schrödinger
equation corresponding to the zero angular momentum state of a jellium tube.

CALCULATION METHOD AND RESULTS

The stationary states of the system can be found by solving the stationary
Schrödinger equation for the given model. Due to the simplicity of the jellium model,
this can be done analytically. The potential model is shown in figure 1b. The potential
inside the walls of the tube is set to -9.81eV. Outside the walls of the tube the potential
is zero. The diameter of the tube is taken 1 nm corresponding to a typical SWCNT
value, while the width of the wall is chosen 0.14 nm. See ref. [3] for details. Because
of the cylindrical symmetry it was feasible to solve the Schrödinger equation in
cylindrical coordinates. The solutions can be written as a combination of first and
second order, Bessel, and modified Bessel functions.
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The coefficients of the Bessel functions were obtained from matching
conditions at the boundaries of the three potential regions.

FIGURE 2. Analytical solutions of stationary Schrödinger equation for jellium tube. (x,y) are the cross
sectional coordinates in nm while the vertical coordinate corresponds to the probability density. The
insets show the ρ(x,y) in nanotubes cross section in grayscale. E is the binding energy for the different
angular momenta.



DISCUSSION AND CONCLUSIONS

As shown in figure 3a, for a jellium tube with 1 nm diameter there are six
allowed energy states, corresponding to angular momentum quantum numbers m = 0,
1, 2, 3, 4, and 5. The energy distribution of the wave packet used in the time
dependent simulations is also shown.

As can be seen in Fig. 3a, the incoming wave packet can excite with significant
probability only three states of the jellium tube, for m = 0, 1, and 2. This means that
the quantum mechanical state of the electrons at every moment can be obtained as the
superposition of these three states with different, time dependent, coefficients.

During the time evolution of the system there can occur time intervals when
only one of the coefficients of these three states is significant, then we can say that the
system is in a quasi-stationary state.

FIGURE 3. a) The stationary energies and the energy distribution of wave packet used in
time dependent simulations. b) A snapshot taken from simulation at t=5.4 fs showing a quasi-stationary
state.

Following the time evolution of our system (the tunneling process) in
simulations, we have found states that shows evident similarity with our analytical
results, in the Fig 3b it is shown the system in a quasi-stationary state that corresponds
to our analytically calculated stationary state for m = 2. The metastability of these
states can explain the increased dwell times of the electron (see Ref. [4]) in the tube
region.

Knowing the analytical wave functions of the system, the jellium model enables us
to investigate the geometrical effects such as diameter dependence of the stationary
energies for different angular momentum quantum states. As expected, with increasing
diameter, the biding energies for all m values tend to that calculated for the graphene
layer using also the jellium potential model.

It is worth emphasizing that the zero angular quantum momentum state has inverse
diameter dependence.



FIGURE 3. a) diameter dependence of binding energies for electrons with different angular
momenta. b) comparison between the exact results and the results using zone folding approximation, for
small and large tube diameters.

A widely used simple approximation is the so-called zone folding method. In
tight biding approximation one calculates the wavefunctions and energies for the
graphene sheet, than applies a periodic boundary condition in the rolling direction to
find out the wavefunctions for the carbon nanotubes. However it is obvious from
experimental findings that there are problems applying the zone folding approximation
to tubes with small diameters [5]. This error was attributed to the hybridization of the
σ  and π  orbitals of the graphene, that are no more perpendicular to each other when
the graphene sheet is rolled up to form a cylinder. As seen in fig 3.b. zone folding
leads differences when applied to small diameter tubes even from purely geometrical
effects.

In conclusion our analytical results are in excellent agreement with numerical
simulation results, and can explain some interesting features of earlier simulations.
Geometrical effects like diameter dependence of binding energies, and geometrical
corrections to zone folding approximation were found.
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