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Abstract

The 9(z,t) wave function of a Gaussian wave packet spreading in free space (V(z) = 0) is
expressed in a didactic form. The expression found is a product of pure real factors and pure phase
factors. This makes very easy to derive the expression for the probability density from the wave

function. The physical meaning of each of the factors is analysed.
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INTRODUCTION

While writing a paper [1] about the time evolution of different wave packets I wanted
to find a didactic expression for the ¢(z,t) wave function of a Gaussian initial state. The
particular expression that was constructed at last is different from the ones found in quantum

mechanics texts [2,3].

INITIAL STATE

Our initial state is a simple Gaussian wave packet of the form:

_ 2
Yo(7; a, xo, po) = \4/ % - €Xp (1%33) - €Xp <—%)- (1)

This wave packet is a product of three factors:

e A normalisation factor that makes the norm [2° [+)(z)[2dz of the wave function to be

unity.
e A plane wave factor that accounts for the non zero momentum p, of the wave packet.

e A bell-shaped localising function with half width at half maximum vIn2-a .
TIME EVOLUTION
The time development of the initial 1)y (z) state is given by [2]:
k2
wat) = 7 [smew (-i)| @ )

g(k) = F[vo(z)] (k) (3)

This Fourier integral can be calculated easily with Gaussian integrals and leads to a wave

function like this:
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TRANSFORMATION OF ¢(z,t) INTO DIDACTIC FORM

Now we want to transform this into something more informative. First note that the
center of the wave packet is moving with the group velocity uy = po/m. Hence it is worth
to write xg + po/m - t instead of zy into the first term of the numerator in the exponential.

Working this out gives the following result:

blat) = ¢ =
P TN w2+ 2 - hfm - t)a?)?
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It is getting clearer already! Now let’s get rid of the complex denominators!

1 _ 1-2i-h/m-t/a?
1+2i-h/m-t/a® 14+4-h*/m?-t2/a*
Utilising this we get finally

Ylat) = W\a?t)v (P (‘ - (%\;(t];t\){m - ) e (i%0) (7)
oxp (i L= ot pujm O ®)

exp (—%arg a(t)) - exp <—i%%t> 9)

a(t) = a+2i%2 (10)

where arg z is the phase of the complex number z, i.e. arg Re’’ = . Our ¢(z,t) has
three main factors (7, 8 and 9 ). The first factor (7) is a product of two pure real coefficients
and a plane wave. This plane wave part of factor 1. and the entire second (8) and third (9)
factors are pure phase factors, i.e. their magnitude is one. Hence it is very easy to calculate
the probability density p(z,t) = [1(z,t)|*: one has only to calculate the square of the pure

real coefficients of factor 1. which gives:

[.I - (xO +p0/m't)]2> (11)

2
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The three terms of ¥ (z,t) are as follows:



Factor 1. (Cf. 7.) A Gaussian of the form (1). This is an expression having the same form

as Yo(z) but the center of gravity of the Gaussian is moving with speed u, = po/m

and its width is increased to |a(t)| = \/a2 +4-h*/m2-12/a2. The maximum value of
the Gaussian is decreasing as its width increases making the area under p(z,t) (total

probability) constant (one). Time evolution of Factor 1 is shown in Fig 1/a.

Factor 2. (Cf. 8.) An z and ¢ dependent phase factor that is quadratic in z. One can see
from Fig 1/b that this factor oscillates faster for larger |z| values. This accounts for
the fact that the higher momentum components of the initial Gaussian y(x) move
with higher velocities. The function which describes the time dependent prefactor of
the phase is 2 -t/ (a - |a(t)|)*. This function (Cf. Fig 2/a) is not monotonic in time.

Its value is zero for ¢ = 0 and ¢ = oo and has a maximum at ¢t = m/h - a®/2.

Factor 3. (Cf. 9.) An z independent (but still ¢ dependent) phase factor. This phase
factor is a product of two terms. The first term is a monotonic function of time while
the second one is oscillating. The phase of the first term is zero for ¢ = 0 (a(t) is pure
real) and —7/4 for t = oo (a(t) is pure imaginary). The second term is exp (—iwpt)
where wy = E/h = p2/(2m)/h and it accounts for the time development of the plane
wave component exp (ipg/h - z) in Factor 1. These two phase factors are plotted in

Fig 2/b, 2/c against time.
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FIG. 1: = and ¢ dependent parts of the wave function. Figs a, b and ¢ show the time development

of the real part of factor 1, factor 2 and of the full ¥ (z,t). The z,y scale is the same for all a, b
and c figures. Fig d shows the time development of the probability density p(z,t). The z,y scale
is the same for all time instants. Atomic units (h = me = 1) are used. a = 2.5Bohr = 0.13nm,

A = h/py = 8/3 Bohr = 0.14nm. The atomic time unit is 2.41 - 10717s. See the text for details.
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FIG. 2: t dependent parts of the wave function. Fig a shows the time dependent prefactor of factor
2 as function of time. Figs b and ¢ show the time dependence of the terms of factor 8. Their real
(solid lines) and imaginary (dashed lines) parts are plotted against time. The thin dashed lines
in Fig b show the asymptotes for ¢ = co. Atomic units (h = me = 1) are used. See the text for

details.





